DBkWik: Towards Knowledge Graph Creation
from Thousands of Wikis

Alexandra Hofmann, Samresh Perchani, Jan Portisch,
Sven Hertling, and Heiko Paulheim

Data and Web Science Group, University of Mannheim, Germany
{ahofmann,sperchan,jportisc}@mail.uni-mannheim.de,
{sven,heiko}@informatik.uni-mannheim.de

Abstract. Popular public knowledge graphs like DBpedia or YAGO are
created from Wikipedia as a source, and thus limited to the information
contained therein. At the same time, Wikifarms like Fandom contain
Wikis for specific topics, which are often complementary to the informa-
tion contained in Wikipedia. In this paper, we show how the DBpedia
approach can be transferred to Fandom to create DBkWik, a comple-
mentary knowledge graph.

Keywords: Knowledge Graph Creation, Information Extraction, Linked
Open Data

1 DMotivation

Large-scale open knowledge graph, like DBpedia [3], YAGO [10], and Wikidata
[11], play a central role in Linked Open Data as linkage hubs as well as sources
of general knowledge [8]. At the same time, the big popular graphs contain very
similar information [6]. In particular, while head entities are covered well, long-
tail entities are either not contained at all, or described only at a very low level
of detail.

While DBpedia and YAGO are created from Wikipedia as a central source of
knowledge, there are so-called Wiki Farms that host individual Wikis covering
special topics, and, in those, also long-tail entities. Among those, Fandom pow-
ered by Wikia' is one of the most popular Wiki Farms?, containing more than
385,000 individual Wikis comprising more than 350 million articles.

In this paper, we introduce DBEkWik3, a knowledge graph extracted from
Wikia. It applies the DBpedia Extraction Framework to dumps of individual
Wikis downloaded from Wikia. We discuss design decisions and challenges, as
well as preliminary results.

! http://fandom.wikia.com/

2 http://www.alexa.com/topsites/category/Computers/Software/Groupware/
Wiki/Wiki_Farms

3 Pronounced Dee-Bee-Quick

2 Approach

The DBpedia Extraction Framework takes WikiMedia dumps as input. Hence,
the first step of our approach is to collect dumps from the Wikia Web site, as
depicted in Fig. 3. However, not all Wikis do have dumps. To date, we have been
able to download data dumps of 15,003 Wikis, totaling to 52.4 GB of data (which
roughly corresponds to the data dump size of the recent English Wikipedia). The
vast majority of those declares English (73.9%) as its language.

As a next step, we execute the DBpedia extraction framework on the ex-
tracted dumps. The result is a collection of individual extracted, disconnected
knowledge graphs. Since there are no crowd generated mappings to a common
ontology, as for the DBpedia ontology, a very shallow schema is generated on-
the-fly for each graph. To that end, we declare a class for each infobox type and
a property for each infobox key used in the Wiki.

To create a unified knowledge graphs from those individual graphs, we have
to reconcile both the instances (i.e., perform instance matching) as well as the
schemas (i.e., perform schema matching). Since pairwise matching of the indi-
vidual graphs would not be feasible due to its quadratic complexity, we follow
a two-step approach: the extracted Wikis are first linked to DBpedia (which is
linear in the number of Wikis). The links to DBpedia are then used as blocking
keys [2] for matching the graphs among each other to reduce the complexity.

The resulting knowledge graph is then loaded into a Virtuoso server serv-
ing the DBkWik dataset, both as a Linked Data service as well as a SPARQL
endpoint.

3 Preliminary Results

As a proof of concept, we have extracted data from 248 Wikis. The resulting
dataset comprises 4,375,142 instances, 7,022 classes, and 43,428 (likely including
duplicates). Out of those, 748,294 instances, 973 classes, and 19,635 properties
are mapped to DBpedia. To match the knowledge graph to DBpedia, we use
string matching on labels using surface forms [1] for entities, manually filtering
out non-entity pages like list pages, and simple string matching for classes and
properties. The resulting knowledge graph encompasses a total of 26,694,082
RDF triples.*

For evaluating the matching to DBpedia, we created gold standards manually,
selecting eight Wikis randomly, and more than 50 entities from each, totaling
in 409 entities annotated with their corresponding DBpedia entity (out of the
409 entities, 20.3% have a corresponding DBpedia entity). We achieve a micro
average F1 score of 0.574, as depicted in Table 4.

Likewise, we created a gold standard for mapping classes and properties,
using the same set of eight Wikis. The gold standard comprises 27 classes and
161 properties with their DBpedia equivalents. 83.2% of all classes and 44.4% of

4 http://dbkwik.webdatacommons . org

Dump 1 Extraction 2
Downloader Framework
="
Y oi

MediaWiki Dumps Extracted RDF % ﬁ
4

X e Internal Linkin Interlinking

DBkWik 4 i b i Instance Instance

Ilsmtked |~ A AT ‘e ® | (|| Matcher ||(==| | Matcher
ata @ g @ o e

Endpoint || | % :oes .| Consolidated Schema Schema

SPARQL MJ Knowledge Graph Matcher Matcher

Fig. 1. Schematic depiction of the DBkWik extraction process

all properties have a counterpart in the DBpedia ontology. We achieve a micro
average F1 score of 0.917 for classes, and 0.852 for properties. The fourth step,
i.e., interlinking the individual graphs using the DBpedia links as blocking keys,
has not yet been implemented.

4 Challenges and Future Work

While the current prototype shows a first proof of concept for extracting a
knowledge graph from a multitude of individual Wikis, there are still quite a
few challenges to be addressed. Those concern the reconciliation of the individ-
ual graphs into a consolidated knowledge graph, as well as the interlinking to
external datasets.

At the same time, there are a few advantages of the dataset at hand. Since
it is extracted from Wikis, both the extracted graph as well as the original Wiki
can be exploited for solving those tasks. Hence, both graph-based and text-based
techniques can be used and combined.

The main difference to Wikipedia-based knowledge graphs like DBpedia and
YAGO is that there are no manual mappings to a central ontology. Hence, the
ontology has to be created on the fly. In the current version, classes and proper-
ties form only a shallow schema. To make the knowlege graph more valuable, we
need to unify them into a common ontology. Here, ontology learning techniques
[4] may be applied. Since, as discussed above, both text and graph are available,
techniques exploiting both [7] are very promising. Furthermore, it will be inter-
esting to see how links to the DBpedia ontology and the rich axioms therein may
be utilized for creating and refining the unified ontology.

Likewise, the interlinking results to DBpedia need improvement, mainly on
instance level and in terms of precision. Here, dual approaches utilizing both
the graph and the original text representation are considered most promising at
the moment. Furthermore, approaches that try to solve the instance and schema

Table 1. Performance of interlinking to DBpedia

Macro avg. Micro avg.

P |R|F1|| P | R |F1
Instances || .449].976|.574| .482|.957|.641
Classes 1.000/.875(.917(|1.000{.917|.957
Properties|| .804/.924|.852|| .798|.917(.853

matching as a unified problem — where instance equivalences can serve as clues
for schema equivalences and vice versa [9] — are worth considering.

Although we have targeted one Wiki hosting platform for this prototype,
the creation of the knowledge graph does not need to end there. WikiApiary
reports more than 20,000 public installations of MediaWiki®, all of which could
be digested by the framework introduced in this paper.

Last, but not least, many methods for refining knowledge graphs have been
proposed in the recent past, e.g., for completing missing information and/or
finding errors [5]. Incorporating those into the extraction — with a careful eye
on approaches which are scalable — would make the resulting knowledge graph
even more valuable.

References

1. Bryl, V., Bizer, C., Paulheim, H.: Gathering alternative surface forms for dbpedia
entities. In: Workshop on NLP&DBpedia. pp. 13-24 (2015)

2. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A
survey. IEEE Transactions on knowledge and data engineering 19(1), 1-16 (2007)

3. Lehmann, J., et al.: Dbpedia—a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web 6(2), 167-195 (2015)

4. Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent
systems 16(2), 72-79 (2001)

5. Paulheim, H.: Knowledge graph refinement: A survey of approaches and evaluation
methods. Semantic web 8(3), 489-508 (2017)

6. Ringler, D., Paulheim, H.: One knowledge graph to rule them all? analyzing the
differences between dbpedia, yago, wikidata & co. In: 40th German Conference on
Artificial Intelligence (2017)

7. Ristoski, P., Faralli, S., Ponzetto, S.P., Paulheim, H.: Large-scale taxonomy in-
duction using entity and word embeddings. In: International Conference on Web
Intelligence (WI) (2017), to appear

8. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: ISWC. pp. 245-260. Springer (2014)

9. Suchanek, F.M., Abiteboul, S., Senellart, P.: Paris: Probabilistic alignment of re-
lations, instances, and schema. VLDB Endowment 5(3), 157-168 (2011)

10. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
16th international conference on World Wide Web. pp. 697-706. ACM (2007)

11. Vrandecié, D., Krotzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78-85 (2014)

® https://wikiapiary.com/wiki/Statistics

