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Abstract. In this paper we present CM-Well, a clustered, horizontally
scalable data store for linked data. We discuss the key architectural
principals of the system and introduce distinguishing features. Thom-
son Reuters has been running CM-Well in production for over two years,
across multiple data centers. The system provides data, via API, to a
number of our online products.
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1 Introduction

A traditional data analytics approach is to use a centralized data warehouse
that collects relevant information before onwards distribution to data marts4.
These marts then structure and index data in forms appropriate for the desired
consumption pattern. We observed that a similar model could work well for
linked data. However, we did not find industry solutions that would serve this
need well, particularly optimized for incremental flow of linked data.

In this paper, we introduce CM-Well5: an open source application for man-
aging large volumes of linked data. Within Thomson Reuters, we run multiple
clusters; for warehousing of our Knowledge Graph in addition to work-in-progress
editorial systems. The focus of CM-Well is on content management and distri-
bution: higher-level functions, such as reasoning, are left to other systems. While
CM-Well includes a browser based user interface, typically most interactions are
via REST API.

2 Architecture

CM-Well is based on a clustered architecture (Fig 1). Philosophically, the ap-
plication is similar to a Linux distribution in that it consists of a well tested

4 https://en.wikipedia.org/wiki/Data mart
5 https://github.com/thomsonreuters/CM-Well
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integration of a number of open source packages including Akka6, Cassandra7,
ElasticSearch8, Jena9 and Kafka10.

Fig. 1. CM-Well Architecture

Each node in the cluster has the same hardware configuration and runs a
set of processes with no single point of failure. Singleton control roles are moved
between nodes on failure, implemented on a “self healing” principle. In a typical
deployment, the cluster is fronted by an HTTP load balancer such as haproxy11.
The majority of the application is written in the Scala language.

2.1 Grouping Triples as immutable “Infotons”

Individual triples are grouped by subject to form an “Infoton”: the basic unit of
storage. These information objects are stored in Cassandra and invert indexed
by ElasticSearch. While writes require a full rewrite of the infoton, reads by
subject can be served from one node and return all triples for the subject. This
grouping of triples forms a fundamental design tradeoff between read and write
performance but has been found to offer good horizontal scale performance: on
our production cluster, API response time for all information on a subject is
around 10ms.

6 http://akka.io/
7 http://cassandra.apache.org/
8 https://github.com/elastic/elasticsearch
9 https://jena.apache.org

10 https://kafka.apache.org
11 http://www.haproxy.org
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Every Infoton write is treated as immutable; this approach permits even-
tually consistent replication across distributed data centers with secondary in-
stances subscribing to a change log and applying writes locally. Depending on
read/write tradeoff, all slaves can replicate from a single master or slaves can
form a branching chain.

2.2 Deployment

While we have found CM-Well capable of balancing read and write traffic, in
most applications consumers wrap CM-Well with a data-mart implemented to
meet the specific needs of their application. Depending on use case, this mart
might be as simple as a caching reverse HTTP proxy to reduce read load or
deployment of a separate search cluster which structures data to meet required
performance targets.

3 Key features

One of the motivating factors for the development of CM-Well was our perception
that key requirements were not met by other tools; either open or closed source.
Integrating our own solution permitted us to focus on key differentiating features.

3.1 Subscription by query

The API surface for CM-Well includes a REST based API for boolean querying
by predicate. Any query can be used as a (server-side stateless) subscription;
returning a time ordered sequence of Infotons matching the query.

Each stream API call returns a continuation token in the HTTP response
headers. When passed in a subsequent request, this token is used as a point-in-
time marker with the stream continuing from the end of the previous response.
Additionally, an optional parameter will instruct CM-Well to include tombstones
for deleted data, effectively treating each query as a FIFO queue of content
events.

This feature is key to the ‘information in motion’ design of CM-Well per-
mitting downstream stores to subscribe to relevant subsets of data defined by
query.

3.2 SPARQL Support

Currently, CM-Well supports two types of SPARQL query: sub and full graph.
When querying, the sub-graph solution consists of two sub-steps: 1) one or more
queries, routed to ElasticSearch, are first used to select a candidate set of nodes
from our data; 2) Such candidate nodes are then loaded to a Jena triple store
on a single machine for SPARQL execution. We are also experimenting with a
second form which builds an execution plan for input ElasticSearch queries based
on data statistics relevant to the SPARQL query. Both solutions are limited to
the underlying characteristics of ElasticSearch, such maximum results window
of 10,000. Hence, wide ranging queries can miss triples of relevance.
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3.3 Triggers

Much of the data we load to CM-Well is highly normalized and often requires
simplification to ease downstream consumption. Our trigger mechanism permits
a sensor to be created, based on a query, which on new data invokes a SPARQL
CONSTRUCT statement. This then generates new predicates.

For example, in our organization ontology, company names are modeled as
their own type <OrganizationName>. Each name includes date based “from”
and “to” predicates to model company name changes over time. While this
temporal model is powerful, it complicates the simple retrieval of a company,
since one must traverse the set of attached names. A trigger is used to create
(or update) a “flattened” name predicate on the organization entity on update
of related organization name entity.

4 Demonstration plan & Conclusions

In this paper we have briefly presented our approach to managing & distributing
large volumes of linked data using CM-Well. We believe the application presents
a cost effective way of building and distributing linked datasets and are pleased
to be able to share with the wider community via open source: without which
CM-Well wouldn’t be possible.

A video demo to support this paper can be found on Vimeo12: the demo shows
a subset of the data from the permid.org dataset, update via API, immutable
history, retrieval by API and our implementation of “full-graph” SPARQL.
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