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Abstract. Web tables constitute valuable sources of information for
various applications, ranging from Web search to Knowledge Base (KB)
augmentation. An underlying common requirement is to annotate the
rows of Web tables with semantically rich descriptions of entities pub-
lished in Web KBs. In this paper, we evaluate three unsupervised anno-
tation methods: (a) a lookup-based method which relies on the minimal
entity context provided in Web tables to discover correspondences to
the KB, (b) a semantic embeddings method that exploits a vectorial
representation of the rich entity context in a KB to identify the most rel-
evant subset of entities in the Web table, and (c) an ontology matching
method, which exploits schematic and instance information of entities
available both in a KB and a Web table. Our experimental evaluation
is conducted using two existing benchmark data sets in addition to a
new large-scale benchmark created using Wikipedia tables. Our results
show that: 1) our novel lookup-based method outperforms state-of-the-
art lookup-based methods, 2) the semantic embeddings method outper-
forms lookup-based methods in one benchmark data set, and 3) the lack
of a rich schema in Web tables can limit the ability of ontology matching
tools in performing high-quality table annotation. As a result, we pro-
pose a hybrid method that significantly outperforms individual methods
on all the benchmarks.

1 Introduction
A large amount of data is published on the World Wide Web as structured

data, embedded in HTML pages. A study by Cafarella et al. [9] estimated that
Google’s index of English documents contains 154 million high-quality relational
tables, which constitute a valuable source of facts about real-world entities (e.g.,
persons, places, products). On the other hand, a great variety of real-world
entities are described on the Web as Linked Data. Only the English version of
DBpedia [8] describes 6.2M entities using 1.1B triples, including 1.6M persons,
800K places, 480K works (e.g., films, music albums), 267K organizations, 293K
species, and 5K diseases.

? Work done while at IBM Research.



Fig. 1. (a) An example of a Web table describing countries ranked by population (b) parts of
two of those countries’ descriptions from Wikidata.

In this paper, we study the problem of interpreting the rows of Web tables
and matching them to semantically rich descriptions of entities published in Web
KBs. Web table annotation [20, 23] (or interpretation [39, 25]) is a prerequisite
for a number of applications, such as Web table search [6, 35] or KB augmen-
tation [29, 13, 11, 37, 38, 30]. We focus only on the evaluation of instance-level
matching (table rows to KB entities) and leave the evaluation of schema-level
matching (table columns to KB properties) outside the scope of this work.

Example 1. Figures 1(a) and (b) contain the descriptions of countries, as they
can be found in a Web table and in Wikidata [4]. The header row (in gray
color), gives the property names of the described entities. Each row in the table
describes a real-world entity (e.g., the second row describes China), and each
column contains the value of the corresponding property, e.g., (“Population”,
“1,377,516,162”), (“Capital”, Beijing)4. Graph-based descriptions of the same
entities are available in the KB, e.g., China is described by node Q148, which is of
type country (node Q6256) and has a label “People’s Republic of China”. Entity
Q148 (China) is related with Q956 (Beijing) by the property P36 (capital).

There are several key challenges in Web table annotation:

1. The types of the entities described in a table are not known in advance, and
the entities described may correspond to more than one type in the target
KB. Most of the entities described in the table of Figure 1(a), can uniquely
be matched to an entity of type country in Wikidata. However, there are
some exceptions. For example, “China” is also the name of a city in Japan
(Q932423) and a city in Texas (Q288864)5. Also, “Falkland Islands” is of
type “British overseas territory” and not “country” according to Wikidata.

4 This model is only applicable to horizontal relational tables, leaving out vertical
tables such as Wikipedia infoboxes. Turning vertical tables to horizontal, identifying
sub-tables, grouped columns, etc. are challenges beyond the scope of this work.

5 Note that although the column header may indicate the right type for the column
contents, the majority of tables on the Web have missing or obscure headers [6].
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2. Which columns should be used to check for correspondences may differ from
one table row to another. In our example, column “Country” can be used to
uniquely identify the names of the entities described in the table. However,
some of the values are not unique: e.g., “Congo” in rows 16 and 122, cor-
responds to two neighbor countries, namely the Democratic Republic of the
Congo, and the Republic of the Congo. To successfully match entities, we
need to compare descriptions using a variable subset of columns/properties
per entity (e.g., “Country” only is enough for most rows, but for Congo,
“Country” and “Capital” are required).

3. The names of an entity described both in a Web table and in a KB, may sig-
nificantly differ. This implies that high string similarity of entity labels does
not provide sufficient matching evidence and additional information, such as
relations to other entities, might be needed as well. For example, the entity
described in row 26 of Figure 1(a) has name “Burma” (the old name of the
country), which is different from label “Myanmar” used in Wikidata. How-
ever, those descriptions can be matched, based on their capital Naypyidaw,
which has the same name both in Wikidata and the table.

Clearly, the quality of the entity mapping process depends on the richness of
the context (e.g., types, names, relationships) exploited to establish the mappings
between Web tables and KBs. In this work, we benchmark three alternative un-
supervised approaches for matching entities whose contextual information may
vary from poor (in Web tables) to rich (in KBs).

First, we examine a lookup-based method, which exploits the columns of the
Web tables recognized as entity names. It essentially detects correspondences
using the minimal contextual information available in Web tables, which is then
refined (based on frequently occurring terms in entity descriptions) or enriched
(by exploiting relationships with other entities) with respect to the context of
entities available in the KB. In the opposite direction, we can exploit a semantic
embeddings method that exploits a vectorial representation of the rich entity
context in a KB to identify the most relevant subset of entities in the Web table.
In-between, we explore an ontology matching approach, which exploits schematic
and instance information of entities available both in a KB and a Web table

In summary, the contributions of our work are as follows:

– We experimentally evaluate the effectiveness of different Web table anno-
tation methods on gold standards exhibiting different data characteristics
(varying number of rows and columns, the existence of related entities, etc.).

– We provide a new Web table annotation gold standard, which is the largest in
the literature (by 3 orders of magnitude in the number of tables and 2 orders
of magnitude in the number of rows and provided matches), while it contains
the greatest diversity on Web table sizes in both rows and columns. We show
that this gold standard is more challenging than other gold standards used
in this field, due to its structure, diversity, and size.

– We introduce a novel lookup-based method that exploits entity relations and
frequent words in the values of entity descriptions, outperforming the accu-
racy of state-of-the-art lookup method by up to 15% in F-score.
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– We propose a hybrid method for Web table annotation, which outperforms
existing methods on all benchmarks, by up to 16% in F-score, while it is able
to discover up to 14% more annotations than the individual methods it is
composed of.

Outline. In what follows, we first discuss the scope of our study and position our
work in the literature (Section 2). In Section 3, we introduce the three classes
of annotation methods. In Section 4, we present our experimental evaluation
using existing gold standards, as well as our Wikipedia-based gold standard,
and finally, we conclude our paper in Section 5.

2 Background & Related Work
In this section, we position our work in the literature, with respect to the

different tasks on which the Web table annotation problem is decomposed.
While there has been some remarkable work on supervised Web table anno-
tation (e.g., [7, 23, 32]), here we focus on unsupervised and scalable methods,
which do not require training sets of annotated tables, or any kind of human
interaction (e.g., [18]). Our motivation for this focus is our use case in design-
ing a fully unsupervised and generic cloud API, making no assumptions about
the input corpus and availability of training data. Our aim is not an exhaustive
evaluation of every possible method, such as supervised (e.g., [7, 23, 32]) or less
scalable (e.g., [19]) methods.

Interpretation of Web tables. Our goal is to map each Web table row to
an entity described in a KB, unlike related works [23, 39, 7] treating individual
cells as entities. The attribute values for an entity described in a row, are given
by the contents of the cells for each column of the row, following the definition
of entity descriptions in the Web of data as sets of attribute-value pairs [10].

Label column detection. The vast majority of Web tables contain a
column, whose values serve as the names of the described entities [6]. Rather
than supervised learning [6], we rely on a heuristic method: the label column
is defined as the leftmost column with the maximum number of distinct (non-
numeric) values [28]. In other words, the label of an entity (given by the label
column) is the most important attribute of an entity (described as a table row).

Lookup. Recent works follow an iterative approach between instance- and
schema-level refinements, until convergence. The first step for such refinements
is to look up the contents of the label column in a KB index and get a list
of first, unrefined candidate matches. For instance, Ritze et al. [28] use the
DBpedia lookup service [1], while Zhang [39] uses the Freebase lookup service
as baselines. In our experiments, we also use the unrefined results of DBpedia
lookup as a baseline. In our lookup-based approach, we use our own generic search
index over Wikidata entities that we refer to as FactBase. Another interesting
approach is to use a trained text classifier to extract the entity types from the
snippets of Google search results, given the content of the cell which has been
inferred to contain the entity name [27].

Relations extraction. Relationships between entities described in the same
row of a Web table can be induced by a probabilistic model built from a Web
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document corpus and natural language processing [30, 6]. Our relationship ex-
traction method is inspired by Venetis et al. [35], which consults an isA database
and a relations database to identify binary relations in Web tables. Instead, we
exploit the information contained in the target KB, and the unambiguous entity
mappings that have been already identified.

Ontology matching and link discovery tools. There is a large body of
work on Ontology Matching [33]. LogMap [22] is a logic-based tool for matching
semantically rich ontologies. It iteratively explores new correspondences, based
on a first list of lexicographically and structurally similar entities and the ontolo-
gies’ class hierarchies, which are then searched for logical inconsistencies. It has
been evaluated as one of the best and most efficient publicly available ontology
matching tools [12]. PARIS [34] is an iterative probabilistic tool, that defines
a normalized similarity score between the entities described in two ontologies,
representing how likely they are to match. This similarity depends on the simi-
larity of their neighbors, and is obtained by first initializing the scores on literal
values, and then propagating the updates through a relationship graph, using
a fixed point iteration. We have chosen these tools based on their popularity
and availability, while we are planning to extend our experiments with other
ontology matching tools such as RiMOM-IM [31] and SERIMI [5], which have
also shown good results in the recent OAEI [2] benchmarks.

Link discovery tools (e.g., [36, 26]) have a similar goal, but their applicability
to our problem is limited as they require linkage rules that are manually-specified,
or learned from training data [21].

Entity matching context. T2K [28] annotates Web tables by mapping
their columns to DBpedia properties, and their rows to DBpedia entities, as-
sociating the whole table with a DBpedia class. The initial candidate instance
mappings stem from a lexicographical comparison between the labels used in the
table and those of the entities described in DBpedia, which allows a first round
of property mapping. The results of property mapping can then be used to re-
fine the instance mappings, and this process continues until convergence. Our
lookup-based method uses a similar candidate generation phase, and then ex-
ploits entity types, relations and frequent terms in the descriptions of candidate
matches to refine or even expand the candidate matches.

TableMiner [39] maps columns to ontology classes and single cells to entities,
following a two-phase process. In the first sampling phase, it searches for can-
didate matches, which are ranked based on similarity computations using the
contents of the table, as well as the page title, surrounding paragraphs and table
caption. Then, it scans the table row-by-row, until a dynamic confidence value
for the type of each column has been reached. In the second phase, it uses the
class mappings of the first phase to refine the candidate instance mappings. Al-
though new candidate matches can be provided in the second phase, convergence
is usually reached from the first iteration. We use a similar sampling phase to
detect the entity types in a table (using the label column).

Gold standards. T2D [28] consists of a schema-level gold standard of 1,748
Web tables, manually annotated with class- and property-mappings, as well as an
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entity-level gold standard of 233 Web tables. Limaye [23] consists of 400 manually
annotated Web tables with entity-, class-, and property-level correspondences,
where single cells (not rows) are mapped to entities. We have adapted the cor-
rected version of this gold standard [7] to annotate rows with entities, from the
annotations of the label column cells. Finally, Bhagavatula et al. [7] use a gold
standard extracted from 3,000 Wikipedia tables, using the hyperlinks of cells to
Wikipedia pages. In this paper, we introduce a new, instance-level gold standard
from 485K Wikipedia tables, the biggest that exists in the literature, in which we
use the links in the label column to infer the annotation of a row to a DBpedia
entity. Overall, those gold standards exhibit a variety in their sizes, existence of
relations, and sparseness, helping us show how these characteristics affect the
quality of different annotation methods.

3 Matching Algorithms
In this section, we describe three different individual methods for the problem

of Web table annotation, as well as a hybrid solution, built on them.

3.1 Lookup Method

The lookup-based method tries to match the poor information for entities
offered by Web tables to the rich information offered for those entities in a KB.
In order to search for the closest possible result in the KB to the contents of a
Web table, it uses a lookup service on the target KB.

Refined lookup. In this baseline, we keep the type of the top lookup result
for each label column cell in a first scan of the table and then store the top-5
most frequent types for each column as acceptable types6. Then, we perform a
second lookup, but this time, we restrict the results to those of an acceptable
type. We select the top result from the refined lookup as the annotation of each
row. This method tries to increase the cohesiveness of the results, by filtering
lookup results which do not fit well with the rest. As an example, consider that
many lookup results are returned for the query “China”, but we only want to
restrict our results to those of an acceptable type (e.g., country, populated place).

FactBase lookup. The lookup method that we introduce, identifies and ex-
ploits frequent terms in the description of an entity, as well as entity relations. We
build on a generic indexing mechanism over a KB with IDs and textual descrip-
tions, and call the generated index FactBase. FactBase offers a lookup service,
allowing the retrieval of entities with a specific label, or any given attribute-value
pair. The pseudocode of FactBase lookup can be found in Algorithm 1.

We perform a first scan of the Web table similar to the refined lookup method
(Lines 6 − 19). In addition to frequent types, in this method, we also extract the
most frequent words, excluding stopwords, used in the values of rdfs:description.
Another feature that we extract in the first scan, is the set of binary relations
between the entity described in a table row and entities mentioned in the same
row, as part of its description (Lines 16 − 19). To identify binary relations, we

6 We assume entities described in the same column to be of the same conceptual type,
which can be expressed by different OWL classes, not considering class hierarchies.
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Algorithm 1: FactBase lookup.
Data: Table T
Result: Annotated table T ′

1 T ′ ← T ;
2 allTypes ← ∅ ; /* a multiset of types */

3 descriptionTokens ← ∅ ; /* a multiset of tokens */
/* samplePhase */

4 labelColumn ← getLabelColumn(T);
5 referenceColumns ← getReferenceColumns(T);
6 for each row i of T do
7 label ← T.i.labelColumn;
8 results ← search(label);
9 if results.size > 0 then

10 topResult ← results.get(0);
11 allTypes.addAll(topResult.getTypes());
12 tokens ← topResult.getDescriptionTokens();
13 descriptionTokens.addAll(tokens);
14 if results.size = 1 then
15 annotate(T ′.i, topResult);
16 for each column j of referenceColumns do
17 v ← T.i.j;
18 if topResult.containsFact(a,v) then /* v is the value of a relation a */
19 candidateRelations.add(j,a);
20 acceptableTypes ← allTypes.get5MostFrequent();
21 descriptionTokens ← descriptionTokens.getMostFrequent();
22 for each column j of referenceColumns do
23 relations[j] ← candidateRelations.get(j).getFirst();

/* annotation phase */
24 for each row i of T do
25 if isAnnotated(T ′.i) then continue;
26 label ← T.i.labelColumn;
27 results ← search strict(label, acceptableTypes, descriptionTokens);
28 if results.size > 0 then
29 topResult ← results.get(0);

30 annotate(T ′.i, topResult);
31 continue ; /* go to the next row */

32 for each column j in relations do
33 r ← relations[j];
34 results ← search loose(label,r,T.i.j);
35 if results.size > 0 then
36 topResult ← results.get(0);

37 annotate(T ′.i, topResult);
38 break ; /* go to the next row */

build on the observation that when the lookup result is unique, it is in most cases
a correct annotation. For the unique results, we further examine if any of their
attribute-value pairs have the same value with any of the cells of the current row
marked as entity references. If that is the case, then we add the attribute of the
attribute-value pair as a candidate binary relation expressed by the column of
this cell. After a small number of agreements on the same attribute for a column
(5 agreements in our experiments), we use this attribute as the final extracted
relation expressed in this column. Finally, we use the unique lookup result for a
row as the annotation of this row, skipping the next phase (Lines 15, 25).

After the first scan, many rows are now annotated with a unique lookup
result7. For the rest of the rows, either many results were returned, i.e., a more
fine-grained lookup is needed (disambiguation), or no results were returned, so

7 We assume that some of the results will be unique, but this is not a requirement. If
it holds, it only speeds up the process and helps in identifying binary relations.
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Fig. 2. Disambiguation graph for two terms.
China candidates are the country or the city.
Edges stand for the topic similarity score be-
tween the candidate objects.

China
BeijingQ148

Q267

Q956
.3

1

(city in the USA)

a more coarse-grained lookup is needed. For the first case, we perform a new,
refined lookup (search strict), restricting the results to those of an acceptable
type, having one of the most frequent tokens in their rdfs:description values, if
applicable (Lines 28 − 31). For the second case, we perform a new, looser lookup
(search loose) in the labels, allowing a big margin of edit distance (Levenshtein),
restricting the results to have in their facts one of the binary relations that we
have extracted (Lines 32 − 38). Allowing a big margin of edit distance offers
a tolerance to typos, nicknames, abbreviations, etc, while relating to the same,
third entity, in the same way (i.e., using the same relationship) is a positive
evidence for two entities to match [15]. The final annotation is the lookup result
with the most similar label.

For example, in Figure 1, if many results for the query term “China” are
returned, we keep those with an acceptable type (e.g., country, populated place)
and having the most frequent words (e.g., “country”, “state”) in their descrip-
tion. If no results are returned for the query “China”, then we perform a new
query, restricting the results to only those whose capital is called “Beijing”, even
if their label is not exactly “China”, but something as close to that as possible.

3.2 Entity Embeddings Method

The approach we now describe is a variation of a linking approach for text
disambiguation. We considered this approach promising for table annotation
because its core hypothesis is compatible with the task. The technique is an
instance of a family of techniques called global disambiguation techniques, which
assume that the entities that appear in sentences or paragraph tend to form
coherent sets with respect to the topic being discussed in the text. For example,
consider two terms, China and Beijing, as shown in Figure 2. There are two
candidates for China, either the city or the country. However, a global approach
would annotate “China” with the country (Q148) because it has a stronger con-
nection to the city of Beijing (Q956). This assumption also applies to entities
described in tables, where columns are usually strongly typed, and hence coher-
ent at least with respect to types and topics.

We base our work on the global disambiguation technique used in the DoSeR
framework [40], where similarity between entities is computed as the cosine dis-
tance between their vector representations. These vectors, called embeddings, are
a continuous-space representation of the entities in the target KB (e.g., DBpe-
dia), that capture the structure of the neighborhood of each node. In DoSeR,
embeddings are computed using word2vec [24], an embedding algorithm for text
that is known for its performance and scalability in computing embeddings for
words. While graphs are clearly different than text, e.g., they have no clear start
or end, DoSeR uses a novel approach to apply word2vec that has shown good
results in terms of scalability and performance of the resulting embeddings. We
will now describe this approach and the way we apply it for table disambiguation,
which we divide in two stages, off-line and a on-line.
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During the off-line stage, we first create a surface form index that maps each
entity e of the KB to a set of known names for the entity m(e). It is collected from
properties in the KB that are known to contain common names for entities, e.g.,
rdfs:label, skos:altLabel, etc. In the case of DBpedia, we also use the property
dbo:wikiPageWikiLinkText, which contains the anchor text used in Wikipedia to
refer to the wiki page of e. Second, we compute entity embeddings using word2vec
as follows: given the target KB, we generate a text document d by performing a
random walk over the neighborhood of each entity in the KB and at each step of
the walk, we append the visited node URIs to d. The resulting text document d
is now used as input to word2vec which produces the embeddings for all words
(node URIs) in the corpus in the standard way.

During the on-line stage, we use the embeddings and the surface form index
to annotate tables. We consider only columns with text values, and regard each
string value as an entity mention e. Then, given a set of entity mentions E, we
annotate each entity e ∈ E as follows. First, we create a disambiguation graph
where the set of vertices V is the union of all candidates entities m(e) (obtained
from the surface form index) for all mentions e ∈ E. For each pair for vertices
v1, v2 ∈ V such that the vertices are not candidates for the same mention, i.e.,
there is no e ∈ E such that v1, v2 ∈ m(e), we add a weighted directed edge
(v1, v2, etp(v1, v2)), where etp(v1, v2) is the normalized cosine similarity between
the embeddings emb(v1), emb(v2) of v1, v2, respectively, computed as follows:

etp(v1, v2) =
cos(emb(v1), emb(v2))∑
k∈V cos(emb(v1), emb(k)

.

Finally, we create an assignment for each node by applying a weighted PageRank
algorithm [40] that allows us to compute the relevance of each node. We use 50
iterations for PageRank and select the nodes with the highest score from the set
of candidates for each mention.

3.3 Ontology Matching Method

In this section, we briefly describe an ontology matching framework for anno-
tating Web tables. Our framework provides the required input to any ontology
matching tool, resulting in Web table annotations. Our candidate mapping selec-
tion enables even the less scalable ontology matching tools to provide annotations
to large-scale KBs. For this approach, we require the existence of a header row,
since each cell of this row defines the name of a property, and the cell of the label
column in the header row defines the name of the table’s class. For more details
and preliminary results of this method, please refer to our previous work [17].

TBox. The values of an entity description can be literals, i.e., the column
property is a datatype property, or references to other entities, i.e., the column
property is an object property. We distinguish them by a pre-processing scan of
the table and by sampling the data types of each column. To identify columns
with entity references, we perform a small number of lookups in FactBase using
the first few values from this column, if we have not already assigned it a numeric
or date type. If most of those lookups return any result, we mark this column
as an object property. The same scan also identifies the label column.
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ABox. We perform a second scan, in which we create a new instance of the
table class for each row. The label and URI suffix assigned to each instance are
determined by the label column cell. The values of this instance for the property
of each column, are the cell contents of this row for the respective column.

In Figure 1, the header row defines the class of the table, Country, and the
properties Population, Capital, and Date, all having the domain Country. Capital
is an object property with range Capital. For the first row of the table in Figure 1,
we create an instance of the class Country, having the label “China”, the value
1,377,516,162 for the property Population, the value Beijing for the property
Capital, and the value 09-22-2016 for the property Date.

Blocking. To enable ontology matching tools that do not scale well be
applicable in this framework, and to improve the efficiency of matching tools that
do scale, we have applied a pre-processing step of candidate mappings selection,
known as blocking [10]. Specifically, we retain only the DBpedia instances whose
labels have at least one common token with the labels of our ontology’s instances.

Finally, we call an ontology matching tool with the table ontology and the
DBpedia ontology after blocking, as input, and return the mapping results.

3.4 Hybrid

We introduce two simple hybrid methods, to explore the benefits of combining
FactBase lookup and embeddings, in the following way:

Hybrid I. If FactBase lookup provides a mapping for the entity of a row,
then this hybrid method keeps this mapping. Otherwise, it uses the annotation
provided by the embeddings for this row, if one exists.

Hybrid II. Same as Hybrid I in inverse order, i.e., using the embeddings
first, before FactBase lookup.

The motivation is that individual methods handle different aspects of the
contextual information that is offered in Web tables. As our experiments show,
where one approach fails to perform correct annotations, the other approach
often succeeds. This approach can only improve the recall of its first component
(i.e., FactBase lookup for Hybrid I and embeddings for Hybrid II), since it returns
all the annotations of the first component, plus additional annotations from the
second component, if the first fails.

4 Experiments
Settings For our experiments, we use MapReduce for annotating and evaluat-
ing multiple tables in parallel, and a key-value store as our index. We do not
report run times for each experiment as they depend on the cluster configura-
tion and other settings. Our experiments on smaller datasets take only a few
minutes on our cluster of 16 medium-sized nodes, while experiments on larger
datasets take several hours to finish. Our FactBase index implementation uses
a 2016 dump of Wikidata, with entities linked to corresponding DBpedia enti-
ties. Hence, FactBase lookup results using gold standards annotated with older
versions of DBpedia may slightly underestimate its accuracy. The datasets gener-
ated or used are made publicly available [16] along with implementation details:
http://ibm.biz/webtables.
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4.1 Datasets

In our experiments, we use three gold standards, whose characteristics are
summarized in Table 1. Rows per table show the min, max and average number
of rows per table in each gold standard. The same holds for columns per table.
For the number of tables featuring entity relations, we applied the relation de-
tection method from FactBase lookup. For a measure of cell completeness, we
use structuredness as defined in [14]. In this context, we compute the percentage
of cells in a table that are not empty (or “NULL” or “-”), as the structuredness
of a table. Then, the overall structuredness of a gold standard is a weighted sum
of each table’s structuredness, where the weight of each table is based on its sum
of columns and rows, normalized by the total sum of columns and rows in this
gold standard. Intuitively, a structuredness value of 1 indicates that no cells are
empty and 0 structuredness represents that all cells are empty.

Table 1. Characteristics of the gold standards. All are made publicly available [16].

Name Tables Rows Matches Rows per Columns per Tables with Structu
table (av.) table (av.) relations redness

T2D 233 28,647 26,124 6 - 586 (123) 3 - 14 (4.95) 108 (46%) 0.97
Limaye 296 8,670 5,278 6 - 465 (29) 2 - 6 (3.79) 78 (26%) 0.59
Wikipedia 485,096 7,437,606 4,453,329 2 - 3,505 (15) 1 - 76 (5.58) 24,628 (5%) 0.85

T2D [3] consists of 233 Web tables, manually annotated with instances from
the 2014 version of DBpedia. It has the highest average number of rows per table
(123), and the highest ratio of tables with relations (46%). It is also the gold
standard with the highest structuredness (0.97), meaning that very few cells are
empty in this corpus.

The updated version of the Limaye gold standard [23] published by Bhagavat-
ula et al. [7], annotates cells with Wikipedia pages. We have replaced Wikipedia
annotations with the corresponding entities from the October 2015 version of
DBpedia. To make this gold standard applicable to our model, we have kept
only one annotation per row, the one assigned to the cell of the label column,
in 296 Web tables for which a label column could be detected. This is the gold
standard with the lowest number of columns per table on average (3.79), still,
one out of four tables (26%) contains entity relations. Due to a big number of
empty cells, it presents the lowest structuredness (0.59), while it also contains a
big number of empty rows. Missing data have a negative impact in the quality of
the annotations for some systems, such as T2K. This dataset could not be used
in the evaluation of ontology matching methods, as it misses header rows, thus
no meaningful property and class names could be created for a table ontology.

Finally, we have created our own Wikipedia gold standard, by extracting
the hyperlinks of existing Wikipedia tables to Wikipedia pages, which we have
replaced with annotations to the corresponding entities from the October 2015
version of DBpedia. Since the header rows in Wikipedia tables are not linked to
properties, our gold standard does not contain schema-level mappings. For the
needs of our experiments, we only consider one mapping per row to evaluate the
different methods, using the annotations for the label column. This gold standard
is much more noisy than the other two, as it contains unannotated rows, multi-
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Table 2. Results over T2D, Limaye, and Wikipedia Gold Standards.

Method
T2D Gold Standard Limaye Gold Standard Wikipedia Gold Standard
Re Pr F1 Re Pr F1 Re Pr F1

DBpedia lookup 0.73 0.79 0.76 0.73 0.79 0.76 - - -
DBpedia refined 0.76 0.86 0.81 0.68 0.73 0.71 - - -
T2K 0.76 0.90 0.82 0.63 0.70 0.66 0.22 0.70 0.34
FactBase lookup 0.78 0.88 0.83 0.78 0.84 0.81 0.50 0.70 0.58

Embeddings 0.77 0.86 0.81 0.65 0.84 0.73 0.53 0.70 0.60

Blocking 0.71 0.32 0.44 - - - 0.39 0.16 0.23
LogMap 0.57 0.89 0.70 - - - 0.29 0.34 0.32
PARIS 0.04 0.42 0.07 - - - - - -

Hybrid I 0.83 0.87 0.85 0.79 0.84 0.81 0.57 0.66 0.61
Hybrid II 0.81 0.85 0.83 0.79 0.84 0.82 0.60 0.69 0.64

column and multi-row cells, which we split and replicate to avoid empty cells,
and cells whose contents are entity labels with additional information for an
entity (e.g., the cell “George Washington February 22, 1732 - December 14,
1799 (aged 67)”, refers to George Washington), which makes the annotation
task more difficult, as such labels are very dissimilar to the corresponding entity
labels in a KB. Finally, even if the average number of rows (15) is much smaller
than in the other two gold standards, we note that it contains almost 800 tables
with more than 1,000 rows and the largest table consists of 3.5K rows. This gold
standard contains the lowest ratio of tables with detected relations (only 5%),
while it exhibits the highest average number of columns per table (5.58). Its
structuredness is high (0.85), thus, only a few cells are empty.

4.2 Evaluation

In Table 2, we present the experimental results over the three gold standards,
with respect to micro-averaged recall, precision, and F-score. The micro-averaged
values over a set of tables are acquired by using the sums of true positives, false
positives, true negatives and false negatives from each table, as if they were a
single test. Different methods are separated by double horizontal lines.

Results over T2D gold standard As the results in Table 2 show, a sim-
ple DBpedia lookup without any schema-level refinements has very good results,
verifying the numbers reported in [28]. Moreover, the DBpedia lookup refined is
almost as good as state-of-the-art methods. FactBase lookup is the overall win-
ner in this gold standard, having a slightly better recall than T2K (+2%) and
a slightly worse precision (-2%). The embeddings are also better than T2K with
respect to recall (+1%), but worse overall (-1% in F-score), showing almost the
same results as the DBpedia lookup refined baseline. The almost perfect struc-
turedness value of T2D provides the ideal conditions for methods that exploit all
the columns of a table for their annotations, such as T2K.

The ontology matching tools exhibit much worse results, mainly in recall. For
a fair comparison between the methods, we have included the results of blocking,
which the ontology matching tools use as input. It is important to note that the
recall of blocking is the upper recall threshold that an ontology matching tool can
achieve and in this case, it is already lower than the recall of the other methods.
Still, the difference between the recall of blocking and the recall of LogMap [22]
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(-14%) and PARIS [34] (-73%), is substantial. Most ontology matching tools are
not designed to provide mappings between such heterogeneous ontologies with
respect to the information richness and diversity they contain, like the ones we
produce. The number of attributes (i.e., columns) used to describe entities in a
Web table are quite different than the respective information in the ontology of
a KB. Efthymiou et al. [15] show that an average entity description in DBpedia
uses 11.44 attributes, whereas the number of attributes used in a Web table
corpus is typically between 4 and 6 (Table 1). Furthermore, Duan et al. [14] show
that unlike Web tables, KBs such as DBpedia are of very low structuredness.

The effectiveness of lookup-based methods heavily relies on the lookup service
that is employed. Thus, lookup-based annotations could be used as an evalua-
tion of such services. For example, when substituting DBpedia lookup with an
unrefined version of FactBase lookup, the results were 0.57 recall, 0.62 precision,
and 0.59 F-measure, as opposed to the T2D results for the DBpedia lookup (0.73
recall, 0.79 precision, and 0.76 F-measure). This shows that the DBpedia lookup
service is much better than the FactBase lookup service, as FactBase lookup is
still in the development phase. This difference is observed, mainly due to the
different ranking of the results in those two services. DBpedia lookup service
exploits the in-degree of entities in its returned rankings, whereas the lookup
service of FactBase only considers the label similarity to the query.

Results over Limaye gold standard As shown in Table 2, FactBase lookup
outperforms other approaches with a difference of +8% in F-score from the sec-
ond best technique, the embeddings, even if they are both tied at the highest
precision. The difference in recall from the second best method DBpedia lookup
is +5%. As we can see in Table 1, even if this gold standard contains more ta-
bles than T2D, the number of rows in those tables is significantly lower. Thus,
methods that rely on a sampling phase (e.g., FactBase lookup), or on a set of
coherent results (e.g., embeddings), perform worse than in datasets with bigger
tables, which is also the reason why DBpedia lookup performs better than DBpe-
dia refined in this gold standard. Nonetheless, even if this gold standard contains
small and sparse tables (0.59 structuredness), there is a decent percentage (26%)
of tables with entity relations, which FactBase lookup can exploit to achieve a
much better performance than embeddings. The recall values of DBpedia lookup
and DBpedia lookup refined are close to those of embeddings, while the latter
show a much better precision. Due to the missing rows in this gold standard,
T2K may disregard some tables as of low quality. It may also detect a differ-
ent label column than the one FactBase lookup detects. This also explains the
worse performance of T2K compared to DBpedia lookup. FactBase lookup yields
a 15% higher F-score than T2K, showing that it can better handle tables of low
structuredness, i.e., with many missing values.

Results over Wikipedia gold standard As shown in Table 2, the embeddings
show the best results for the Wikipedia gold standard, with FactBase lookup
following (-4% in F-score) with worse recall (-6%) and equally good precision.
Ontology matching is again worse than the other methods, even from the step of
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blocking (we excluded PARIS from this experiment given its poor performance
on T2D). As expected, the results presented in this table are much worse than the
other two gold standards, which can be justified by the noisiness of this dataset,
as explained in Section 4.1. Noisiness seems to favor the embeddings over the
other methods, since it can better handle ambiguous mentions to entities in a
textual context. Another challenge in this gold standard is the small number of
rows, which makes it more difficult for FactBase lookup and embeddings to have
a decent sample for type refinements and relations extraction, and provide a set
of coherent results, respectively. For the same reason, due its strict matching
policy favoring precision over recall - at least 50% of the rows must be mapped
to KB entities of the same type - T2K managed to annotate only 119K out
of the 485K Web tables, resulting in a very low recall, presenting an overall
performance close to that of LogMap. DBpedia lookup could not be applied to
this gold standard, as the public server hosting it could not handle such a large
amount of queries.

Hybrid methods As shown in Table 2, the hybrid methods seem to improve the
results of their constituent methods, by enhancing recall, with a minor impact
on precision. In T2D, Hybrid I exhibits an important improvement of the quality
results over either of its constituent methods. Its recall is 5% better than that
of FactBase lookup, while its precision is only 1% lower, resulting in a 2% higher
F-score. Hybrid II is also better than its constituent methods, but slightly worse
than Hybrid I. In T2D, the individual methods that constitute the hybrid have a
76% Jaccard similarity in the table rows that they annotate correctly, while their
recall values are very close. An ideal solution that always chooses the correct
annotation among the annotations provided by those methods would yield a
recall of 0.88 for T2D.

In the Limaye gold standard, the benefit of using a hybrid method is not as
significant as in T2D, but it is still the best-performing method. This is due to
the fact that FactBase lookup performs much better than the embeddings, so the
latter has little to offer in their combination. Still, the recall of their combination
is better than that of FactBase lookup by 1% and the precision is the same as
that of both methods (0.84). The two hybrid methods are almost identical, with
Hybrid II showing a slightly better F-score (+1%). Again, the Jaccard similarity
of correctly annotated rows in the constituent methods is 75%, while an ideal
combination of those methods would yield a recall of 0.81.

In the Wikipedia gold standard, the hybrid methods significantly outperform
the individual methods, as both of the constituent methods have a good precision
and modest recall, which is the ideal case for such hybrids. Intuitively, in such
cases the first constituent method has given only few annotations, still they
are mostly correct. Thus, it has skipped to annotate many rows, which can be
annotated by the second constituent method, mostly with a correct KB entity
(good precision). Specifically, the recall of Hybrid II is better than that of the
embeddings (+7%), while its precision is worse by only 1%, yielding an F-score
that is 4% better than the embeddings. The difference to the FactBase lookup
results is even bigger (+10% recall and +6% F-score). Hybrid II is much better
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than Hybrid I (+3% F-score) in this gold standard, since it exploits the better
performance of embeddings.

Lessons Learned The following are the key lessons learned from our results: 1)
Both FactBase lookup and embeddings work better with tables of many rows. In
tables with few rows (less than 5), embeddings provide better annotations than
FactBase lookup. 2) When the Web tables contain entity relations, FactBase
lookup provides the best annotation results. 3) Embeddings can cope with noise
in the string similarity of labels better than the other methods. 4) Most ontology
matching tools are not suited to match a flat ontology to another which has a
rich structure. 5) Hybrid methods work better when the constituent methods
have modest recall and good precision.

5 Conclusion & Future Work
In this paper, we performed a thorough evaluation of three different families

of methods to annotate Web tables, and discussed key lessons learned from
our experiments. We introduced a new benchmark and a hybrid approach that
outperforms individual methods by up to 16% in F-score. In the future, we plan
to expand our evaluation of ontology matching tools and propose a new track for
the upcoming OAEI campaign to encourage the community to use and extend
ontology matching tools as knowledge base population systems.
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