
Diefficiency Metrics: Measuring the Continuous
Efficiency of Query Processing Approaches

Maribel Acosta1, Maria-Esther Vidal2,3, and York Sure-Vetter1

1 Institute AIFB, Karlsruhe Institute of Technology
{maribel.acosta,york.sure-vetter}@kit.edu

2 Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS)
vidal@cs.uni-bonn.de

3 Universidad Simón Boĺıvar

Abstract. During empirical evaluations of query processing techniques,
metrics like execution time, time for the first answer, and throughput
are usually reported. Albeit informative, these metrics are unable to
quantify and evaluate the efficiency of a query engine over a certain time
period – or diefficiency –, thus hampering the distinction of cutting-
edge engines able to exhibit high-performance gradually. We tackle this
issue and devise two experimental metrics named dief@t and dief@k,
which allow for measuring the diefficiency during an elapsed time period
t or while k answers are produced, respectively. The dief@t and dief@k
measurement methods rely on the computation of the area under the
curve of answer traces, and thus capturing the answer concentration over
a time interval. We report experimental results of evaluating the behavior
of a generic SPARQL query engine using both metrics. Observed results
suggest that dief@t and dief@k are able to measure the performance of
SPARQL query engines based on both the amount of answers produced
by an engine and the time required to generate these answers.

1 Introduction

Reproducibility and replicability are two important issues to be addressed in
the validation of experimental results. Testbeds and benchmarks are bedrocks
towards achieving these issues, and the Semantic Web community has made
important contributions in this direction, e.g., in the series of workshops on
Evaluation of Ontology-based Tools (EON) [4] and the activities of the Ontology
Alignment Evaluation Initiative (OAEI). Moreover, testbeds and benchmarks
such as LUBM [9], Feasible [15], or WatDiv [3], have become building blocks for
the evaluation of existing Semantic Web technologies.

Metrics provide measurement methods for reporting and analyzing experi-
mental results, thus representing an important premise to allow for reproducibil-
ity and replicability of experimental studies. Particularly, in the area of the
Semantic Web, metrics provide measurement methods for quantifying the be-
havior of Semantic Web technologies, e.g., introducing semantics-aware metrics
and normalization for ontologies [19], measuring link discovery approaches [12],
or the performance [7, 16] or scalability [6] of query engines over RDF datasets.

Specifically, to assess the performance of query processing techniques, metrics
like execution time, time for the first answer, answer completeness, and through-
put are usually reported. These metrics provide measurement methods to quan-
tify the performance of a query processing technique at a given point in time, i.e.,
either when the first or all answers are produced. However, these metrics are un-
able to quantify and evaluate the efficiency of a query engine over a certain time
period – or diefficiency4 –. In consequence, continuous high-performance engines
cannot be clearly distinguished from those which only exhibit high-performance
at certain discrete points in time or that produce answers at a slower rate.

In this paper, we tackle the problem of measuring the continuous efficiency of
query processing techniques and propose two experimental metrics named dief@t
and dief@k. The proposed metrics capture the diefficiency during an elapsed time
period t or while k answers are produced. Specifically, the dief@t and dief@k
measurement methods rely on the computation of the area under the curve of
answer traces to capture the concentration of answers over a time interval.

We evaluate the effectiveness of dief@t and dief@k on different configurations
of a SPARQL query engine which produces results incrementally at different
rates. The observed measurements capture complementary information about
the continuous behavior of the studied engine. More importantly, the reported
results allow for uncovering properties of the engine. For instance, these results
provide valuable insights about the engine configuration that continuously pro-
duces more answers over time or at a slower rate. None of these properties could
be either detected or explained if only traditional metrics would be measured.

In summary, the contributions of this work are as follows:

– Novel experimental metrics, dief@t and dief@k, that measure the continuous
efficiency of query engines.

– Formal properties and proofs that demonstrate the theoretical soundness of
the proposed metrics.

– An empirical evaluation that indicates that dief@t and dief@k allow for un-
covering particularities in the performance of query processing approaches
that could not be captured with metrics defined in the literature.

The remainder of this paper is structured as follows: Related work is pre-
sented in Section 2. We motivate our work in Section 3 by illustrating the
processing of two SPARQL queries against the DBpedia dataset using a typ-
ical query engine. In Section 4 we formally introduce the two new experimental
metrics dief@t and dief@k for measuring the performance or incremental query
processing approaches. We evaluate our approach in Section 5 by conducting an
empirical study where we evaluate the performance of different SPARQL engines
with the proposed metrics. Finally, the paper concludes in Section 6.

4 We propose the term diefficiency as the combination of the Greek prefix di(a)- (which
means “through” or “across”) and efficiency.

2 Related Work

The Database and Semantic Web communities have actively worked on the def-
inition of metrics to provide computational methods to measure the behavior
of knowledge and data management approaches. For example, ontologies can be
measured during the whole ontology life cycle, and metrics as the one proposed
by Vrandecic and Sure [19] allow for semantics-aware metrics which, e.g., can
be used for ontology assessment and for tracking ontology evolution. Further,
metrics for evaluating the quality of ontology matching and alignment tech-
niques have been defined by benchmarking activities of the Ontology Alignment
Evaluation Initiative (OAEI)5 which resulted in [8].

Metrics also capture the behavior of knowledge and database systems in
terms of different dimensions, e.g., efficiency or effectiveness. Table 1 summarizes
metrics included in existing benchmarks [3, 5, 9, 11, 14–17, 20], and commonly
used to evaluate one-time and continuous query processing tools [2, 10, 13, 18],
i.e., query engines over persistent datasets or against volatile data streams.

LUBM [9] is an exemplar benchmark to evaluate OWL applications with
different reasoning capabilities and storage mechanisms. LUBM includes both
data and query generators, as well as precise measurement methods to evaluate
efficiency and effectiveness of OWL systems. Effectiveness represents the quality
of the answers produced by the evaluated query processing technique, and it is
measured in terms of the metric of answer completeness and soundness. LUBM
also proposes to measure data processing efficiency in terms of two metrics: load
time and query response time. Further, a combined metric enables to quantify
the behavior of a query processing engine as the harmonic mean of query re-
sponse time, and answer completeness and soundness. The Berlin Benchmark [5]
(BSBM) is a benchmark generator tailored to evaluate SPARQL query engines.
In addition to data and query, BSBM makes available a test driver able to ex-
ecute sequences of queries over the system under test (SUT), thus simulating
concurrent access of multiple clients. Additionally, BSBM presents a set of met-
rics to measure the SUT efficiency. The proposed measurement methods allow
for quantifying queries executed per hour or second, load time, query execution
time, loading time, and overall runtime. In addition, time required for a query
engine to produce the first answer is commonly reported in experimental studies
that evaluate the incremental behavior of the query engine [2, 10].

Metrics have also been proposed to capture the behavior of query processing
systems over continuous data. SRBench is a benchmark for streaming SPARQL
query processing. Besides datasets and queries, SRBench proposes metrics to
evaluate effectiveness in terms of correctness, and efficiency according to through-
put and response time. Finally, Sharaf et al.[18] define two metrics to evaluate
the performance of data stream management systems: (a) the average response
time captures a system’s output rate, and (b) the average slowdown is the aver-
age of the ratio of a system’s response time to its ideal processing time.

5 http://oaei.ontologymatching.org/

Table 1. Characteristics of metrics. Metrics are characterized according to the type
of query processing for which they have been defined, i.e., one-time or continuous,
and in terms of the metric interpretation: higher is better (HB) or lower is better
(LB). Different measurement methods have been proposed to calculate similar met-
rics, e.g., Query Response Time [9], Response Time [20], and Execution Time [10].

Characteristics

Metrics One-Time Continuous Metric
Query Processing Query Processing Interpretation

E
ff

ec
ti

ve
n
es

s Answer Completeness and Soundness [9] X HB
Correctness [20] X HB
Answer Completeness [10] X HB

E
ffi

ci
en

cy

Query Response Time [9] X LB
Loading Time [9] X LB
Throughput[20] X HB
Response Time [20] X LB
Queries per Second [5] X HB
Queries Mixes per Hour [5] X HB
Min/Max Query Execution Time [5] X LB
Overall Runtime [5] X LB
Composite Query Execution Time [5] X LB
Avg. Execution Time All Queries [5] X LB
Average Response Time [18] X LB
Average Slowdown [18] X LB
Response Time of Joined Tuples [18] X LB
Slowdown of Joined Tuples [18] X LB
Time for the First Tuple[2] X LB
Source Selection Time [10] X LB
Execution Time [10] X LB

C
om

b
in

ed Combined Metric [9] X HB

These metrics enable the evaluation of a query engine at a given point in time,
e.g., either when the first or all answers are produced, as well as the quality of
the produced answers. Nevertheless, none of these metrics are able to quantify
the continuous behavior of either a one-time or a continuous query engine over
a time period, i.e., diefficiency. The dief@t and dief@k measurement methods
overcome this limitation, and provide complementary information to existing
metrics that enables to quantify the answer generation rate in a time interval.

3 Motivating Example

Consider the SPARQL queries Query 1 from Listing 1.1 and Query 2 from List-
ing 1.2 to be executed against the DBpedia dataset using a query engine.6 To
6 Prefixes are used as in http://prefix.cc/.

Table 2. Query performance measured using metrics from the literature. The perfor-
mance of the approaches nLDE Not Adaptive (NA), nLDE Selective (Sel), and nLDE
Random (Ran) are compared. For each SPARQL query and metric, highlighted cells
indicate the approach that exhibits the best performance in that metric.

Metrics Query 1 Query 2
NA Sel Ran NA Sel Ran

Time First Answer (sec.) 28.438 27.058 7.641 0.371 0.242 0.333
Execution Time (sec.) 300.328 300.404 300.137 10.593 12.210 9.304
Throughput (answers/sec.) 46.416 24.334 77.031 486.274 421.868 553.659
Completeness 50.31% 26.38% 83.44% 100% 100% 100%

illustrate, we selected the nLDE engine [1], and executed both queries using
three different configurations of nLDE: Not Adaptive, Selective, and Random.

Listing 1.1. Query 1: Retrieve infor-
mation about resources classified as
DBpedia places and infrastructures.
SELECT * WHERE {

?d1 a dbo: Place .
?d2 a dbo: Infrastructure .
?d1 dbp: r2LengthF ?o .
?d2 dbp:lats ?o .
?d1 geo: point ?o1 .
?d2 dbp: coordinatesRegion ?o2 . }

Listing 1.2. Query 2: Retrieve infor-
mation about resources classified as
DBpedia alcohol and Yago alcohol.
SELECT * WHERE {

?d1 dc: subject dbc: Alcohols .
?d1 dbp: routesOfAdministration ?o .
?d1 dbp: smiles ?s .
?d2 a dbyago : Alcohols .
?d2 dbp: routesOfAdministration ?o .
?d2 dbp: molecularWeight ?w . }

Table 2 reports the performance achieved by the three nLDE approaches
using conventional query processing metrics.7 Based on Table 2, we can conclude
the following about the performance of the approaches when executing Query 1:
(1) nLDE Random clearly outperforms the other approaches in all the metrics,
and (2) nLDE Selective exhibits the worst performance in this case. Regarding
the performance achieved by the nLDE approaches when executing Query 2, we
can conclude that: (3) nLDE Random achieves the best performance in terms
of execution time and throughput, (4) nLDE Selective is able to produce the
first answer faster than the other approaches, and (5) nLDE Selective, however,
exhibits the worst performance when considering execution time and throughput.

In order to further inspect the behavior of the approaches, let us consider
now the continuous performance achieved by the nLDE engine when executing
the SPARQL queries. Figure 1 depicts the answer trace of each approach. An-
swer traces (cf. Definition 1) records the progression of answers produced over
time by an engine. Regarding Query 1, we observe in Figure 1(a) that the three
approaches exhibit a uniform behavior over time, i.e., one of the approaches
exhibits the best performance in all the reported metrics. For instance, nLDE
Random steadily outperforms the other approaches by continuously producing
7 For simplicity, we assume that the reported results are significantly different.

0

5000

10000

15000

20000

0 100 200 300
Time (sec.)

A

ns
w

er
s

P
ro

du
ce

d
nLDE Not Adaptive
nLDE Selective
nLDE Random

Query 1

(a) Query 1: The approaches exhibit
uniform behavior over time.

0

1000

2000

3000

4000

5000

0.0 2.5 5.0 7.5 10.0 12.5
Time (sec.)

A

ns
w

er
s

P
ro

du
ce

d

nLDE Not Adaptive
nLDE Selective
nLDE Random

Query 2

(b) Query 2: The approaches exhibit
irregular behavior over time.

Fig. 1. Answer traces: continuous query performance. Answers produced (y-axis) as
a function of time (x-axis). (a) nLDE Random continuously outperforms the other
approaches. (b) The answer trace reveals that in the first 7.45 sec. of execution, nLDE
Not Adaptive outperforms other approaches by producing more answers per time unit.
However, this behavior is not captured by the metrics reported in Table 2.

more answers over time. Moreover, the answer trace shows that nLDE Selective
produced answers at a slower rate in comparison with the other approaches.
These findings are consistent with the results (1) and (2).

Regarding the execution of Query 2, in Figure 1(b) we can observe that
the approaches exhibit an irregular behavior over time. For example, the an-
swer trace reveals that nLDE Not Adaptive exhibits a better performance than
nLDE Random during the first 7.45 seconds of query execution. This new result
provides complementary information about the performance of nLDE Random,
which was not captured by the analysis (3) using the metrics from Table 2. Fur-
thermore, the high slope of the answer trace of nLDE Selective indicates that
it produces over 1, 000 answers at a higher rate than the other approaches from
seconds 5 to 7.45 of execution. This finding uncovers novel properties about the
behavior of nLDE Selective that were not visible with the metrics reported in
Table 2 and to some extent invalidates the conclusion derived in (5).

In this section, we have presented a brief qualitative analysis of the perfor-
mance of different settings of the nLDE engine over time by manually inspecting
the answer trace of the engine when executing two queries. However, to enable
reproducibility and replicability of experimental studies, we need quantitative
methods to measure the continuous efficiency of query processing approaches.

4 The Diefficiency Metrics

Analyses of answer traces provide valuable insights about the continuous ef-
ficiency – or diefficiency – of query engines. Therefore, we devise diefficiency

metrics that rely on answer traces to measure the performance of SPARQL
query engines. The answer trace records the exact point in time when an engine
produces a query answer and can be formally defined as follows.

Definition 1 (Answer Trace). Let ρ be an approach, Q a query, and Ω the set
of query answers produced by ρ when executing Q. The answer trace of ρ when
executing Q, denoted Aρ,Q, is defined as a sequence of pairs (t1, µ1), . . . , (tn, µn)
where µi ∈ Ω is the ith answer, ti ∈ R is the timestamp that indicates the point
in time when µi is produced, and ti ≤ ti+1 for all 1 ≤ i < n.

For example, consider that the engine α executes a query Q and produces an
answer µ1 at the second 1.0 followed by another answer µ2 at the second 2.0.
Then, the answer trace of α is as follows: Aα,Q = 〈(1.0, µ1), (2.0, µ2)〉. Note that
when a SPARQL engine ρ produces no answers (Ω = ∅) for a query Q, then the
answer trace Aρ,Q correspond to the empty sequence.

Based on the answer trace, we can determine whether a SPARQL engine fol-
lows an incremental or a blocking approach during query execution. Incremental
approaches are able to produce results over time, i.e., answers are produced at
different points in time. In our example, Aα,Q indicates that α produces answers
incrementally while executing Q. In contrast, blocking approaches produce all
query answers at a single point in time – usually at the end of query execu-
tion. For instance, the answer trace Aβ,Q = 〈(2.0, µ1), (2.0, µ2)〉 of an engine β
indicates that β corresponds to a blocking approach while executing Q. In the
following, we define incremental and blocking approaches.

Definition 2 (Incremental Approach). Let ρ be an approach and Aρ,Q its
answer trace when executing a query Q. ρ is an incremental approach if there
exists (tj , µj) in Aρ,Q such that tj < tj+1.

Definition 3 (Blocking Approach). Let ρ be an approach and Aρ,Q its an-
swer trace when executing a query Q. If tj = tj+1 for all 1 ≤ j < n, then ρ is
considered a non-incremental or blocking approach.

0
1 2

1

2

Time

A
ns

w
er

s

Incremental approach

0
1 2

1

2

Time

A
ns

w
er

s

Blocking approach

Fig. 2. Answer distribution

Besides characterizing incremental and
blocking approaches, answer traces allow for
determining the distribution of answers over
time, i.e., the answer rate of the engine in inter-
vals of time. For instance, based on the answer
traces Aα,Q and Aβ,Q from the running exam-
ple, Figure 2 depicts the answer distribution
for the engines α (incremental) and β (block-
ing): at t=1, α has produced one answer while
β has produced no answers until that point.

The answer distribution corresponds to the number of answers produced in
function of time. In the case of incremental approaches, the answer distribution
function is computed by applying a linear interpolation between the time points
recorded in the answer trace. For blocking approaches, the answer distribution

function corresponds to the maximum of number of answers produced at a point
in time. Formally, the answer distribution function is defined as follows.

Definition 4 (Answer Distribution Function). Let ρ be a SPARQL query
engine and Aρ,Q = 〈(t1, µ1), . . . , (tn, µn)〉 its answer trace when executing a query
Q. The answer distribution function of ρ when executing Q, denoted Xρ,Q, is
defined as a function Xρ,Q : [0; tn]→ N . For a given t ∈ [0; tn], with 0 ≤ t < t1,
Xρ,Q(t) = 0. For t such that ti ≤ t ≤ ti+1, with 1 ≤ i ≤ n, Xρ,Q(t) is as follows:

Xρ,Q(t) =
{
i+ t−ti

ti+1−ti , ti 6= ti+1

max({j | (tj , µj) ∈ Aρ,Q, tj = ti}) , ti = ti+1

In order to measure the continuous efficiency of engines while producing query
answers over time, we propose metrics that rely on the answer distribution func-
tion. The proposed metrics comprise two novel measurement methods, dief@t
and dief@k. Both dief@t and dief@k compute the area under the curve of the an-
swer distribution function, which allows for measuring the diefficiency achieved
by engines during query execution. Furthermore, in the following sections we
will show that dief@t and dief@k capture the irregular behavior of incremental
approaches, such as the one reported in Figure 1(b).

4.1 dief@t: Diefficiency at Time t

The measurement method dief@t measures the diefficiency of an engine in the
first t time units of query execution. To do so, dief@t computes the area under
the curve of the answer distribution function until t. Formally, this area can
be defined as the definite integral of the answer distribution function from the
moment the engine starts executing a query until the time t.

Definition 5 (dief@t). Let ρ be an approach, Q a query, and Xρ,Q the answer
distribution function when ρ executes Q. Consider that ρ produces n answers,
i.e., Xρ,Q is defined for the interval [0; tn]. Given t ∈ R a point in time such that
t ∈ [0; tn], the diefficiency of ρ in the first t time units of execution, denominated
dief@t, is computed as follows:

diefρ,Q@t :=
∫ t

0
Xρ,Q(x) dx

To illustrate the application of dief@t in diefficiency analysis, consider the
answer traces of the nLDE variants from the motivating example. Figure 3 de-
picts the computation of dief@t at t=7.45 seconds. Intuitively, approaches that
produce answers at a higher rate in a certain period of time must exhibit high di-
efficiency values. Figure 3 indicates that nLDE Not Adaptive achieves the best
performance among the other approaches. The dief@t values reported in Fig-
ures 3(a) to 3(c) confirm that nLDE Adaptive exhibits the highest diefficiency
followed by nLDE Random, while nLDE Selective is the least efficient approach.
In the following property, we formally state the interpretation of dief@t.

0

1000

2000

3000

4000

5000

0.0 2.5 5.0 7.5 10.0 12.5
Time (sec.)

A

ns
w

er
s

P
ro

du
ce

d
nLDE Not Adaptive
nLDE Selective
nLDE Random

Query 2

(a) nLDE Not Adaptive
dief@t = 7323.46

0

1000

2000

3000

4000

5000

0.0 2.5 5.0 7.5 10.0 12.5
Time (sec.)

A

ns
w

er
s

P
ro

du
ce

d

nLDE Not Adaptive
nLDE Selective
nLDE Random

Query 2

(b) nLDE Random
dief@t = 5031.90

0

1000

2000

3000

4000

5000

0.0 2.5 5.0 7.5 10.0 12.5
Time (sec.)

A

ns
w

er
s

P
ro

du
ce

d

nLDE Not Adaptive
nLDE Selective
nLDE Random

Query 2

(c) nLDE Selective
dief@t = 1148.63

Fig. 3. dief@t of the nLDE engine for Query 2 at t=7.45. (a), (b), and (c) highlight the
area under the curve of the answer distribution function that is computed for measuring
the diefficiency of the approaches at the given t. nLDE Not Adaptive exhibits the
best performance for the given interval, followed by nLDE Random and lastly nLDE
Selective. The reported dief@t values are congruent with these observations.

Property 1. Let ρ1 and ρ2 be approaches that execute a query Q. Given t ∈ R for
which Xρ1,Q and Xρ2,Q are defined. If diefρ1,Q@t > diefρ2,Q@t then ρ1 exhibits
a better performance than ρ2 until t in terms of diefficiency.

dief@t interpretation: Higher is better.

Lastly, it is important to note that dief@t and throughput are not the same
metrics. For example, until t=7.45, nLDE Not Adaptive and nLDE Random have
produced nearly the same amount of answers,8 in consequence, the throughput
values of both approaches are also almost the same.9 However, we can observe
that nLDE Not Adaptive continuously produced more answers than nLDE Ran-
dom and this is captured by dief@t. In contrast to throughput that considers
the total number of answers produced at a single point in time, dief@t accounts
for the progression of answers over an entire time interval.

4.2 dief@k: Diefficiency at k Answers

The metric dief@k measures the diefficiency of an engine while producing the first
k answers of a query, after the first answer was produced. dief@k computes the
area under the curve of the answer distribution until the point in time tk when
the engine produces the kth answer, as recorded in the answer trace. Formally,
this area corresponds to the definite integral of the answer distribution function
from the moment the engine starts the query execution until tk.
8 Until t=7.45, nLDE Not Adaptive produced 3075 answers and nLDE Random 3067.
9 The throughput values achieved by nLDE Not Adaptive and nLDE Random are 410

and 408.93 (answers/sec.), respectively.

0

1000

2000

3000

4000

5000

0.0 2.5 5.0 7.5 10.0 12.5
Time (sec.)

A

ns
w

er
s

P
ro

du
ce

d
nLDE Not Adaptive
nLDE Selective
nLDE Random

Query 2

(a) nLDE Not Adaptive
dief@k = 4686.30

0

1000

2000

3000

4000

5000

0.0 2.5 5.0 7.5 10.0 12.5
Time (sec.)

A

ns
w

er
s

P
ro

du
ce

d

nLDE Not Adaptive
nLDE Selective
nLDE Random

Query 2

(b) nLDE Random
dief@k = 3517.85

0

1000

2000

3000

4000

5000

0.0 2.5 5.0 7.5 10.0 12.5
Time (sec.)

A

ns
w

er
s

P
ro

du
ce

d

nLDE Not Adaptive
nLDE Selective
nLDE Random

Query 2

(c) nLDE Selective
dief@k = 3235.67

Fig. 4. dieft@k of the nLDE engine for Query 2 at k=2000. (a), (b), and (c) highlight
the area under the curve of the answer distribution function that is computed for
measuring the diefficiency of the approaches while producing the first k answers. The
slope of the answer distributions indicate that nLDE Selective produces the first 2000
answers at a higher rate, followed by nLDE Random and then by nLDE Not Adaptive.
The reported dief@k values are congruent with these observations.

Definition 6 (dief@k). Let ρ be an approach, Q a query, and Aρ,Q and Xρ,Q

the answer trace and answer distribution function when ρ executes Q, respec-
tively. Consider that ρ produces n answers. Given k ∈ N such that 0 < k ≤ n,
the diefficiency of ρ while producing the first k answers, denominated dief@k, is
computed as follows:

diefρ,Q@k :=
∫ tk

0
Xρ,Q(x) dx

where tk ∈ R is the point in time when ρ produces the kth answer of Q, i.e.,
(tk, µk) ∈ Aρ,Q.

In Figure 4, we illustrate the application of dief@k based on the answer traces
of nLDE. Intuitively, engines that require a short amount of time to produce
k answers are considered more efficient. In consequence, the lower the value
of dief@k, the higher the continuous efficiency (or diefficiency) of the engine.
Figure 4 indicates that nLDE Selective achieves the best performance among the
other approaches when producing the first 2000 answers. Figures 4(a) to 4(c)
report the values of dief@k, which confirm that nLDE Selective achieves the
highest diefficiency, while nLDE Not Adaptive is the least efficient approach
in terms of the rate while producing the first 2000 answers. In the following
property, we formally state the interpretation of dief@k.

Property 2. Let ρ1, ρ2 be approaches, and Q a query. Let n1, n2 be the number
of answers produced by ρ1 and ρ2 when executing Q, respectively. Given k ∈ N ,
k ≤ n1 and k ≤ n2, if diefρ1,Q@k < diefρ2,Q@k then ρ1 exhibits a better
performance than ρ2 in terms of diefficiency while producing the first k answers.

dief@k interpretation: Lower is better.

4.3 Extensions and Properties of dief@t and dief@k

Measuring Diefficieny at Any Time Interval So far, we have defined met-
rics to measure the diefficiency since the approach starts the execution of a
query until the last answer is produced. Nonetheless, the metric dief@t can be
extended to measure the diefficiency of a querying approach at any given time
interval [ta; tb] defined in the answer trace. Intuitively, the diefficiency in [ta; tb]
corresponds to the area under the curve of the answer distribution in that inter-
val. By applying the additive property of integration on intervals, this area can
be computed with the metric dief@t at ta and tb as follows:

∫ ta
0 Xρ,Q(x) dx+

∫ tb
ta
Xρ,Q(x) dx =

∫ tb
0 Xρ,Q(x) dx∫ tb

ta
Xρ,Q(x) dx =

∫ tb
0 Xρ,Q(x) dx−

∫ ta
0 Xρ,Q(x) dx∫ tb

ta
Xρ,Q(x) dx = diefρ,Q@tb − diefρ,Q@ta

(1)

The diefficieny of an approach in the interval [ta; tb] is dief@tb − dief@ta.

Measuring Diefficieny Between the kath and the kbth Answers The
metric dief@k can also be used to measure the diefficiency of a query engine
during the production of the kath and the kbth answers, with ka ≤ kb. From
the answer trace of the approach, it is possible to obtain tka and tkb, the points
in time when the kath and the kbth answers are produced, respectively. By
definition of the answer trace (cf. Definition 1), it holds that tka ≤ tkb. In this
case, the diefficiency of the engine corresponds to the area under the curve of the
answer distribution in the interval [tka; tkb]. By applying the additive property
of integration on intervals, this area can be computed with dief@k as follows:

∫ tka

0 Xρ,Q(x) dx+
∫ tkb

tka
Xρ,Q(x) dx =

∫ tkb

0 Xρ,Q(x) dx∫ tkb

tka
Xρ,Q(x) dx =

∫ tkb

0 Xρ,Q(x) dx−
∫ tka

0 Xρ,Q(x) dx∫ tkb

tka
Xρ,Q(x) dx = diefρ,Q@kb − diefρ,Q@ka

(2)

The diefficieny of an approach while producing the kath and the kbth answers
is dief@kb − dief@ka.

Based on the definitions of dief@t and dief@k, it is possible to establish:
the analytical relationship between the proposed metrics (Proposition 1), the
diefficiency of blocking approaches at any point in time (Theorem 1), and the
total diefficiency – from the moment the approach starts the query execution
until it produces the last answer – of incremental approaches (Theorem 2).

Proposition 1 (Analytical Relationship Between dief@t and dief@k).
Let ρ be an approach, Q a query, and Xρ,Q the answer distribution function
when ρ executes Q. Consider that Xρ,Q is defined for the interval [0; tn]. The
following condition holds for all k such that 1 ≤ k ≤ n:

diefρ,Q@tk = diefρ,Q@k

Theorem 1. The diefficiency of blocking approaches is always zero.

Proof. Consider β a blocking approach and Xβ,Q its answer distribution function
when executing a query Q. Assume that Xβ,Q is defined for the interval [0; tn].
Without loss of generality, assume that diefficiency is measured with dief@t.
We will show that the dief β,Q@t′ is zero for all t′ in the interval [0; tn]. By
definition of blocking approach (cf. Definition 2), it holds that ti = tn with
1 ≤ i ≤ n. With Definition 4, we obtain that Xβ,Q(t) = 0, for all 0 ≤ t < tn,
then

∫ t
0 Xβ,Q(x) dx = 0, i.e., dief β,Q@t′ = 0. Lastly, Xβ,Q is greater than zero

only for t′ = tn, for which we obtain that
∫ tn
tn
Xβ,Q(x) = 0, i.e., dief β,Q@tn = 0.

Theorem 2. In queries where the number of answers is higher than one, the
total diefficiency of incremental approaches is higher than zero.

Proof. Consider α an incremental approach, Xα,Q its answer distribution and
n ∈ N the number of answers when executing a query Q. By hypothesis, n > 1.
By contradiction, assume that the total diefficiency of α is zero. Without loss of
generality, assume that the diefficiency of α is measured with dief@k, therefore,
diefα,Q@n = 0. Since n > 1 and α is incremental, there exists an answer µj
produced by α, such that 1 ≤ j < n and tj < tn. Without loss of generality, lets
assume that j = n−1. The diefficiency of α between the n-1th and the nth answer
can be measured as diefα,Q@n − diefα,Q@n-1. Since Xα,Q is non-decreasing, it
holds that diefα,Q@n ≥ diefα,Q@n-1. By hypothesis diefα,Q@n = 0, therefore
diefα,Q@n-1 = 0. Applying Equation (2) we obtain that

∫ tn
tn-1

Xα,Q(x) dx = 0.
Note that, by Definition 4, Xα,Q(x) > 0 for all x with t1 ≤ tn-1 ≤ x ≤ tn. In
consequence, if

∫ tn
tn-1

Xα,Q(x) dx = 0 then tn-1 = tn. However, this contradicts
the hypothesis that α is incremental.

5 Empirical Study

We empirically assess the effectiveness of our metrics dief@t and dief@k to mea-
sure the performance of SPARQL query engines. Experimental results are avail-
able at https://doi.org/10.6084/m9.figshare.5008289 under CC BY 4.0.
Approaches and Implementations: We compare the performance of three
configurations of the nLDE engine [1] to execute SPARQL queries, i.e., Not
Adaptive, Random, and Selective. nLDE is implemented in Python 2.7.6. Ex-
periments were run on a Debian Wheezy 64 bit machine with CPU: 2x Intel(R)
Xeon(R) CPU E5-2670 2.60GHz (16 physical cores), and 256GB RAM. We set
the query evaluation timeout to 300 sec. with random delays as specified in [1].
Dataset and Query Benchmark: We use the nLDE Benchmark 1 [1] that
comprises 20 queries executed against the DBpedia dataset (v. 2015). Bench-
mark queries are composed of basic graph patterns of between 4 and 14 triple
patterns; these queries are non-selective and produce a large number of interme-
diate results. We selected 16 queries for which all the approaches produce more
than one answer to compute the area under curve of the answer distribution.

Q6.sparql

(TFFF)^−1

(ET)^−1

Comp T

dief@t

NA
Ran
Sel

Q8.sparql

(TFFF)^−1

(ET)^−1

Comp T

dief@t

NA
Ran
Sel

Q11.sparql

(TFFF)^−1

(ET)^−1

Comp T

dief@t

NA
Ran
Sel

Q12.sparql

(TFFF)^−1

(ET)^−1

Comp T

dief@t

NA
Ran
Sel

Q13.sparql

(TFFF)^−1

(ET)^−1

Comp T

dief@t

NA
Ran
Sel

Q15.sparql

(TFFF)^−1

(ET)^−1

Comp T

dief@t

NA
Ran
Sel

Q16.sparql

(TFFF)^−1

(ET)^−1

Comp T

dief@t

NA
Ran
Sel

Q20.sparql

(TFFF)^−1

(ET)^−1

Comp T

dief@t

NA
Ran
Sel

(a) Queries in which approaches exhibit a nearly “uniform” behavior
Q2.sparql

(TFFF)^−1

(ET)^−1

Comp T

dief@t

NA
Ran
Sel

Q3.sparql

(TFFF)^−1

(ET)^−1

Comp T

dief@t

NA
Ran
Sel

Q7.sparql

(TFFF)^−1

(ET)^−1

Comp T

dief@t

NA
Ran
Sel

Q9.sparql

(TFFF)^−1

(ET)^−1

Comp T

dief@t

NA
Ran
Sel

Q14.sparql

(TFFF)^−1

(ET)^−1

Comp T

dief@t

NA
Ran
Sel

Q17.sparql

(TFFF)^−1

(ET)^−1

Comp T

dief@t

NA
Ran
Sel

Q18.sparql

(TFFF)^−1

(ET)^−1

Comp T

dief@t

NA
Ran
Sel

Q19.sparql

(TFFF)^−1

(ET)^−1

Comp T

dief@t

NA
Ran
Sel

(b) Queries in which dief@t uncovers unknown performance patterns

Fig. 5. Performance per benchmark query of SPARQL query processing approaches:
nLDE Not Adaptive (NA), nLDE Random (Ran), nLDE Selective (Sel). Axes corre-
spond to the following experimental metrics: Inverse of execution time (ET−1), in-
verse of time for the first tuple (TFFT−1), completeness (Comp), throughput (T), and
dief@t. Interpretation of all metrics (axes): higher is better.

5.1 Measuring the Performance of SPARQL Query Processing
Approaches with Metrics from the Literature and dief@t

In this evaluation, we report on the performance achieved by the nLDE ap-
proaches when executing the benchmark queries using metrics defined in the
literature (cf. Section 2) and our proposed metric dieft@t. The values for each
metric are defined and measured/computed as follows:

– Execution time (ET): Elapsed time spent by the approach to complete the
execution of a query. ET is measured as the absolute wall-clock system time
as reported by the Python time.time() function.

– Time for the first tuple (TFFT): Elapsed time spent by the approach to
produce the first query answer. TFFT is measured as the absolute wall-clock
system time as reported by the Python time.time() function.

– Completeness (Comp): Percentage of the total number of answers produced
by the approach after executing a query.

– Throughput (T): Number of total answers produced by the approach after
evaluating a query divided by its execution time (ET).

– dief@t: As in Definition 5, where t is the minimum execution time registered
by one of the tested approaches when executing a query; dief@t is computed
with the function auc from the flux package in R.
In Figure 5, we report on the results of the performance achieved by the nLDE

configurations per query using radar plots. Radar plots allow for comparing the
performance of the studied approaches in multiple dimensions, in this case, in
several metrics. For the sake of readability, we transformed the axes of the plots
such that all the metrics have the same interpretation: higher is better.

Figure 5(a) comprises the queries where the performance of the nLDE ap-
proaches is consistent in all the metrics, i.e., the approaches display a “uniform”
behavior over time. The consistent performance can be easily observed when the
polygon of an approach encloses the ones of the other approaches. For example,
according to the plotted results in Q16, the approach nLDE Random exhibits
the best performance in all the dimensions, followed by nLDE Random, and
then by nLDE Selective. In cases like these, the metrics defined in the literature
accurately capture the overall performance of the approaches. It is important to
note that, for these queries, dief@t is consonant with the other metrics, thus,
corroborating the steady outperformance of one approach.

Figure 5(b) groups the queries in which the approaches exhibit a fluctuating
performance among the metrics. In Q2, for instance, the values of the metrics
from the literature indicate that nLDE Random and nLDE Selective are compet-
itive approaches. Yet, dief@t allows for uncovering that nLDE Selective is able
to continuously produce answers at a faster rate than nLDE Random for this
query. Conversely, in Q7, conventional metrics indicate that nLDE Not Adap-
tive is outperformed by the other approaches. Nonetheless, dief@t suggests that
nLDE Not Adaptive is rather competitive in terms of diefficiency. In summary,
dief@t allows for more comprehensive analyses of approaches, while characteriz-
ing the entire engine performance during query execution.

5.2 Measuring the Continuous Answer Rate of SPARQL Query
Processing Approaches with dief@k

We now analyze the diefficiency achieved by the nLDE approaches while produc-
ing the first k answers for queries from Figure 5(b).10 We compute dief@k as in
10 Q14 was discarded since it produces only four answers.

Q2.sparql

k=25%

k=50%

k=75%

k=100%

NA
Ran
Sel

Q3.sparql

k=25%

k=50%

k=75%

k=100%

NA
Ran
Sel

Q7.sparql

k=25%

k=50%

k=75%

k=100%

NA
Ran
Sel

Q9.sparql

k=25%

k=50%

k=75%

k=100%

NA
Ran
Sel

Q17.sparql

k=25%

k=50%

k=75%

k=100%

NA
Ran
Sel

Q18.sparql

k=25%

k=50%

k=75%

k=100%

NA
Ran
Sel

Q19.sparql

k=25%

k=50%

k=75%

k=100%

NA
Ran
Sel

Fig. 6. Diefficiency while producing a portion k of the answers, per benchmark query
and SPARQL query processing approaches: nLDE Not Adaptive (NA), nLDE Ran-
dom (Ran), nLDE Selective (Sel). Performance is measured with dief@k, with k=25%,
k=50%, k=75%, k=100%. Interpretation of the axes: lower is better.

Definition 6, and we set k to the minimum amount of answers produced among
all the nLDE variants in each query. Figure 6 reports on the dief@k values of
nLDE while producing the first 25%, 50%, 75%, and 100% of the query answers.
We can observe that, in most of the cases, nLDE Not Adaptive maintains a
steady answer rate over time (except for Q7 and Q9). Furthermore, dief@k val-
ues show that the behavior of nLDE Selective and nLDE Random fluctuates11,
even producing the first 25% of the answers up to 3 times slower than nLDE
Not Adaptive (in Q7); this fluctuating behavior can be a consequence of the
adaptive heuristics implemented by nLDE Random and nLDE Selective during
query processing. With this study, we show how the metric dief@k can be used
to explain and quantify continuous answer rates of query engines.

6 Conclusions and Future Work

In this paper, we tackled the problem of quantifying the continuous behavior of
a query engine, and define two novel experimental metrics, dief@t and dief@k.
Formal properties of these metrics demonstrate the analytical characteristics of
the proposed measurement methods, as well as stating lower bounds according to
the characteristics of the assessed query engine. Additionally, dief@t and dief@k
were empirically evaluated, and observed results allow for uncovering patterns
in the performance of the evaluated engines that could not be quantified with
existing metrics. As proof of concept, dief@t and dief@k were used to evaluate
SPARQL query approaches, however, both metrics will be able to capture and
quantify the behavior of any method that produces results incrementally.

In the future, we plan to use dief@t and dief@k to evaluate state-of-the-art
SPARQL query engines, and compare observed patterns with the ones quantified
11 This can be observed when the polygons in the plot are not perfect diamonds.

by metrics proposed by existing benchmarks. We hypothesize that dief@t and
dief@k will allow for uncovering unknown characteristics of these engines.

References
1. M. Acosta and M. Vidal. Networks of linked data eddies: An adaptive web query

processing engine for RDF data. In ISWC, pages 111–127, 2015.
2. M. Acosta, M.-E. Vidal, J. Castillo, T. Lampo, and E. Ruckhaus. ANAPSID: An

adaptive query processing engine for SPARQL endpoints. In ISWC, pages 18–34,
2011.

3. G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee. Diversified stress testing of RDF
data management systems. In ISWC, pages 197–212, 2014.

4. J. Angele and Y. Sure, editors. Proceedings of the EON Workshop, volume 62 of
CEUR Workshop Proceedings. CEUR-WS.org, 2002.

5. C. Bizer and A. Schultz. The Berlin SPARQL benchmark. Int. J. Semantic Web
Inf. Syst., 5(2):1–24, 2009.

6. L. Cheng and S. Kotoulas. Efficient large outer joins over mapreduce. In Euro-Par,
pages 334–346, 2016.

7. S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. Apples and oranges:
a comparison of RDF benchmarks and real RDF datasets. In SIGMOD, pages
145–156, 2011.

8. J. Euzenat and P. Shvaiko. Ontology Matching, Second Edition. Springer, 2013.
9. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base

systems. Web Semant., 3(2-3):158–182, Oct. 2005.
10. G. Montoya, M. Vidal, Ó. Corcho, E. Ruckhaus, and C. B. Aranda. Benchmarking

federated SPARQL query engines: Are existing testbeds enough? In ISWC, pages
313–324, 2012.

11. M. Morsey, J. Lehmann, S. Auer, and A. N. Ngomo. DBpedia SPARQL benchmark-
performance assessment with real queries on real data. In ISWC, pages 454–469,
2011.

12. M. Nentwig, M. Hartung, A. N. Ngomo, and E. Rahm. A survey of current link
discovery frameworks. Semantic Web, 8(3):419–436, 2017.

13. D. L. Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and
adaptive approach for unified processing of linked streams and linked data. In
ISWC, pages 370–388, 2011.

14. N. A. Rakhmawati, M. Saleem, S. Lalithsena, and S. Decker. QFed: query set for
federated SPARQL query benchmark. In iiWAS, pages 207–211, 2014.

15. M. Saleem, Q. Mehmood, and A. N. Ngomo. FEASIBLE: A feature-based SPARQL
benchmark generation framework. In ISWC, pages 52–69, 2015.

16. M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. FedBench:
A benchmark suite for federated semantic data query processing. In ISWC, pages
585–600, 2011.

17. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SPˆ2Bench: A SPARQL
performance benchmark. In ICDE, pages 222–233, 2009.

18. M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs. Algorithms and
metrics for processing multiple heterogeneous continuous queries. ACM Trans.
Database Syst., 33(1):5:1–5:44, 2008.

19. D. Vrandecic and Y. Sure. How to design better ontology metrics. In ESWC, pages
311–325, 2007.

20. Y. Zhang, M. Pham, Ó. Corcho, and J. Calbimonte. SRBench: A streaming RD-
F/SPARQL benchmark. In ISWC, pages 641–657, 2012.

