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Abstract. The disjunctive skolem chase is a sound and complete (albeit
non-terminating) algorithm that can be used to solve conjunctive query
answering over DL ontologies and programs with disjunctive existential
rules. Even though acyclicity notions can be used to ensure chase termi-
nation for a large subset of real-world knowledge bases, the complexity
of reasoning over acyclic theories still remains high. Hence, we study
several restrictions which not only guarantee chase termination but also
ensure polynomiality. We include an evaluation that shows that almost
all acyclic DL ontologies do indeed satisfy these general restrictions.

1 Introduction

Answering conjunctive queries (CQs) over knowledge bases is an important rea-
soning task with many applications in data management and knowledge rep-
resentation. A flurry of research efforts have significantly improved our under-
standing of this problem, and led to different solutions for description logics
(DL) ontologies [2, 6, 25] and programs with disjunctive existential rules [1, 5].
One such proposed approach is the use of acyclicity notions [9, 10, 19, 21]; i.e.,
sufficient conditions that guarantee termination of the disjunctive chase algo-
rithm [3] – a sound and complete materialization-based procedure where all
relevant consequences of a knowledge base are precomputed, allowing queries to
be directly evaluated over materialized sets of facts. As shown in [9, 10], acyclic-
ity notions can be used to determine that the chase will indeed terminate over
a large subset of real-world DL ontologies.

Nevertheless, even if a knowledge base is characterized as acyclic, CQ answer-
ing still remains a problem of high theoretical complexity: CQ answering over
acyclic programs with disjunctive existential rules is coN2ExpTime-complete
[7]. For acyclic Horn-SROIQ ontologies, it is ExpTime-complete [10].

Example 1. LetRn = {Di−1(x)→ ∃yi.Li(x, yi)∧Di(yi), Di−1(x)→ ∃zi.Ri(x, zi)
∧Di(zi) | i = 1, . . . , n}. The chase of the program P = 〈Rn, {D0(c)}〉, depicted
in Figure 1, is exponentially large in n. Note that, P is acyclic with respect to
all notions described in [10] and can be expressed in most DL fragments.
? The author thanks the competent and friendly staff of trauma surgery ward OUC-S2
at the University Hospital Carl Gustav Carus, Dresden, where some of this research
has been executed.
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Fig. 1. Graphical Representation of the Chase of P.

In this paper, we study the limits of tractable reasoning using the chase and
propose a series of restrictions that, if combined, prevent the exponential blow-up
highlighted in the previous example. Moreover, we define a novel acyclicity no-
tion, namely tractable acyclicity, tailored for DL ontologies, which ensures that
the size of the chase stays polynomial. In turn, this implies that CQ answer-
ing over deterministic “tractably acyclic” ontologies is (theoretically) as hard as
solving the same problem over a given set of facts. On the practical side, we
assess the generality of tractable acyclicity using two different corpuses of real-
world ontologies. As it turns out, our notion does characterize almost all acyclic
ontologies, thus showing that CQ answering may be quite efficient in practice.

In summary, our main contributions are as follows:

– We consider five general restrictions on the expressivity of rules and ontolo-
gies, and thoroughly study the complexity of CQ answering when combina-
tions of these restrictions are satisfied (Section 3).

– Using some of these restrictions, we define tractable acyclicity, a notion spe-
cially tailored for DL ontologies which guarantees tractability of reason-
ing over expressive deterministic ontologies (Section 4). To the best of our
knowledge, the use of notion is the only approach to guarantee tractable CQ
answering over ontologies besides the combined approach [12, 17, 18, 20, 25].

– We empirically study the generality of tractable acyclicity on two large cor-
puses of real-world ontologies with encouraging results (Section 5).

2 Preliminaries

Let P, V and F be some infinite countable and pairwise disjoint sets of predi-
cates, variables and function symbols, respectively, such that every S ∈ P∪F is
associated with some arity ar(S) ≥ 0. Constants are function symbols of arity 0.
Terms are built from variables and function symbols as usual. We abbreviate a
sequence of terms t1, . . . , tn with t, and identify such a sequence with the set {t}.
An atom is a formula of the form P (t) with P a |t|-ary predicate. With ϕ[x] we
stress that x are the free variables in the formula ϕ. We identify a conjunction
of formulas with the set of all the formulas in the conjunction and vice-versa.



A (disjunctive existential) rule is a first-order logic (FOL) formula of the
form

∀x,y.(B[x,y]→ ∨ni=1∃vi.Hi[x,vi]) (1)

where B (the body) and Hi (the heads) are conjunctions of atoms with Hi 6= ∅
for all i = 1, . . . , n; and v1, . . . ,vn, y and x are pairwise disjoint. For the sake of
brevity, we omit universal quantifiers when writing rules. The variables in x are
called frontier variables. A rule is Horn if n = 1 and non-Horn otherwise. A fact
is a ground atom; i.e., an atom without occurrences of variables. An instance I
is a finite set of facts only containing constants as terms. A program is a pair
〈R, I〉 with R a rule set and I an instance. Without loss of generality, we assume
that every existentially quantified variable occurs in at most one rule (†).

The main reasoning task we are studying in this paper is CQ answering.
Nevertheless, without loss of generality, we restrict our attention to the simpler
task of entailment of Boolean conjunctive queries (BCQs). A BCQ, or simply a
query, is a formula of the form ∃y.Q[y] with Q a conjunction of atoms.

A substitution is a partial function defined over the set of terms. The applica-
tion of a substitution σ to an atom α, denoted with ασ, is the atom that results
from replacing all occurrences of every term t in the domain of σ with σ(t). We
denote the substitution {(t1, u1), . . . , (tn, un)} with [t1/u1, . . . , tn/un].

The skolemization sk(ρ) of a rule ρ as in (1) is the formula B →
∨n

i=1 sk(Hi)
where, for every i = 1, . . . , n, sk(Hi) is the conjunction that results from replacing
every (existentially quantified variable) v ∈ vi by the term fv(x) with fv a fresh
function symbol specific to v (which, by assumption (†) and the definition of a
rule, is also specific to the i-th disjunct in the head of the rule ρ).

Definition 2. Consider a rule ρ of the form (1), a substitution σ defined only
on x ∪ y, and a set of facts F . Then, 〈ρ, σ〉 is applicable to F if Bσ ⊆ F . In
this case, the result of applying 〈ρ, σ〉 to F is {F ∪ sk(Hi)σ | i = 1, . . . , n}.

A chase tree of 〈R, I〉 is a (possibly infinite) tree where each node is labeled
by a set of facts, such that all of the following conditions hold.

1. The root is labeled with I.
2. If a node labeled with F has n children labeled with F1, . . . ,Fn, then there

is some rule ρ ∈ R and some substitution σ such that {F1, . . . ,Fn} is the
result of applying 〈ρ, σ〉 to F .

3. (Fairness) If there is a node α labeled with a set F , a rule ρ ∈ R, and a
substitution σ such that 〈ρ, σ〉 ∈ R is applicable to F ; then, in all paths
starting from α, there is some node β with n children, each of them labeled
with a different set in the result of applying 〈ρ, σ〉 to the label of β.

The result of the (Skolem) chase is the (possibly infinite) set of all (possibly
infinite) sets of facts obtained as the union of all sets of facts along some path.

Due to the order of rule applications, a program P may admit many different
chase trees but, nevertheless, the result of the Skolem chase of P is always unique.



Fact 3 A program P entails a query ∃v.Q if and only if F |= ∃v.Q holds for
every set of facts F in the result of the chase of P.

If the chase terminates for some program, then the result of the chase is the
set of all (finite) leaf labels. In this case, Fact 3 leads to an effective decision
procedure for BCQ entailment. Therefore, in the subsequent section, we study
several restrictions on a set of rules which ensure efficient chase termination.

3 Tractable Reasoning for Disjunctive Existential Rules

In this section we present and study several restrictions, which can ensure
tractability of BCQ entailment over rule sets. These insights will be the ba-
sis for our investigation of tractable query answering for ontologies in Section 4.
An important concept for predicting the behaviour of the chase procedure is the
dependency graph of a rule set:

Definition 4. The dependency graph G(R) of a rule set R has the existential
variables in R as nodes, and an edge y → z if the skolem chase of some program
〈R, I〉 contains terms of the form fz(t) and fy(s) such that fy(s) ∈ t.

The key to our tractability results is the notion of a braid, which, intuitively
speaking, consists of a possibly large number of intertwined paths.

Definition 5. Consider a directed graph G. A path is a sequence of nodes
α1, . . . , αn with αi → αi+1 ∈ G for all i = 1, . . . , n − 1. The graph G is acyclic
if, for every path α1, . . . , αn with n ≥ 2, α1 6= αn. A simple path is a path
which does not contain two occurrences of the same node. A braid is a sequence
of nodes α1, . . . , αn such that, for all i = 1, . . . , n − 1, there are at least two
different simple paths from αi to αi+1.

A number of natural conditions on a set of rules R might be considered in
order to reduce the complexity of the chase. We will consider the following five:

(a) The graph G(R) is acyclic.
(f) The arity of all function symbols in sk(R) is at most 1.
(b) The length of the braids in G(R) is bounded.
(w) The treewidth of the rules in R is bounded.
(p) The arity of the predicates in R is bounded.

Most of these conditions are self-explanatory and straightforward to check.
The treewidth of rules is the treewidth of the graph that has the terms of a
rule as nodes, and an undirected edge whenever two terms appear in the same
atom [13]. It is a well-known measure for “tree-likeness”, which is bounded by
the number of terms per rule.1 Checking if a graph G has treewidth at most k
for a given constant k is polynomial in G. Both acyclicity and the maximal braid
1 Readers not familiar with treewidth may safely use this number as a surrogate.
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Fig. 2. Complexity of BCQ entailment with respect to the size of the rule set satisfying
some combination of (a), (f), (b), (w) and (p). All of the above results are tight and refer
to the combined complexity of BCQ entailment over nondeterministic and deterministic
rule sets, respectively.

length can be computed efficiently if the dependecy graph is known. We present
ways of approximating these conditions efficiently in Section 4.

In the remainder of the section, we characterize the (combined) complexity
of BCQ entailment over sets of rules satisfying every possible combination of
the above restrictions. We summarize our findings in Figure 2, which only in-
cludes cases that satisfy (a), since its omission leads to undecidability (Theorem
11). Moreover, as indicated in Theorem 7, the “coNP/ P” result refers to the
complexity regarding the size of the rule set, with the query considered fixed.

Whilst restrictions (a), (f), (w), and (p) have been considered in previous
work [10], (b) is a novel notion instrumental to ensure tractability of reasoning.
See how the rule set from Example 1 may not satisfy such a restriction.

Example 6. Let Rn be the set of rules presented in Example 1 and let G(Rn)
be the graph depicted in Figure 3. Note how, for every every odd n ≥ 1, there
is a braid of length (n+ 1)/2 in G(Rn); e.g., z1, z3, . . . , zn or y1, y3, . . . , yn.

Combining all restrictions allows us to obtain the main result of this section.

Theorem 7. Deciding BCQ entailment for programs 〈R, I〉 with R a rule set
satisfying (a), (f), (b), and (w) is in coNP provided that the size of the query is
fixed. Moreover, if R is a set of deterministic rules, then it is in P.

The key for proving this result is a property that relates braid length to the
size of the chase. As we will show, if a rule set R satisfies (f), then every term
in the chase of 〈R, I〉 corresponds to some path in G(R) and some constant. In



turn, this implies that, if there is a polynomial bound on the number of paths in
G(R), then the number of terms introduced during the computation of the chase
of 〈R, I〉 is also polynomially bounded. Therefore, we first show that there is
indeed such a polynomial upper bound on the number of paths in a graph if the
length of the braids in such a graph is fixed. Once this is shown, we can easily
verify that, if R satisfies (b) and (f), then there is a polynomial upper bound on
the number of terms that may occur in the chase of a program 〈R, I〉.

Lemma 8. Consider some directed acyclic graph G with n nodes. If there is a
bound k on the length of the braids, then there are at most 3k · n3k paths in G.

Proof. First, we verify the following intermediate result: (∗) Consider two nodes
α and β in G. If, for every node γ, the sequence α, γ, β is not a braid in G; then
PG(α, β) ≤ 3n2 with PG(α, β) the number of paths from α to β.

Let G′ be the graph that results from removing every node γ not occurring
in a path from α to β. Then, for every node γ in G′ with γ 6= α and γ 6=
β, PG′(α, γ) = 1 or PG′(γ, β) = 1. Let G′′ be the graph obtained from G′

via simultaneous application of the following rules to every node γ in G′: If
PG′(α, γ) = 1 and α → γ /∈ G′, then remove the (only) edge of the form δ →
γ ∈ G′ and add α→ γ. If PG′(γ, β) = 1 and γ → β /∈ G′, then remove the edge
of the form γ → δ ∈ G′ and add γ → β.

The previously presented transformation preserves the number of paths from
α to β; i.e., PG(α, β) = PG′′(α, β). Moreover, the nodes in G′′ can be fully
distributed into four pairwise disjoint s ets L1, L2, L3 and L4 such that all of
the following hold: L1 = {α}; L4 = {β}; and, for every pair of nodes γ and δ,
γ → δ ∈ G′′ only if (i) γ = α and δ ∈ L2 ∪ L4, (ii) γ ∈ L2 and δ ∈ L3 ∪ L4,
or (iii) γ ∈ L3 and δ = β. As the sets L2 and L3 may contain at most n nodes,
then PG′′(α, β) ≤ n2 + n+ 1 ≤ 3n2 (as n is at least 2).

We now proceed to show the lemma. Let Bm be the set of paths con-
taining a path p in G iff (i) p contains a braid of length m and (ii) p does
not contain a braid of length m + 1. Then, every path p ∈ Bm is of the
form α1, s1, α2, s2, . . . , sm−1, αm where α1, . . ., αm is a braid; and, for every
i = 2, . . . ,m − 1, si is a sequence of nodes not containing a node γ such
that αi, γ, αi+1 is a braid in G (as this would imply that p contains a braid
of length m + 1). By (∗), there are at most 3n2 possible paths in G for every
si. Moreover, there are at most nm braids of length m. Therefore, Bm contains
at most nm · 3n2(m−1) ≤ 3n3m paths. The number of paths in G is at most∑k

i=0 |Bi| ≤ k|Bk| (as every Bj with j > k is empty). Hence, the number of
paths in G is necessarily less than 3k · n3k. ut

Proof (of Theorem 7). Since R satisfies (w), we can apply a normalization
procedure to compute a conservative extension 〈R′, I〉 of 〈R, I〉 with an upper
bound on the number of variables per rule [13]. Moreover, this transformation
does not modify the dependency graph of R (i.e., G(R) = G(R′)).

We first determine an upper bound on the maximal number of terms T and
atoms A that may occur in the chase of 〈R′, I〉. By (f), every term in the chase
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Fig. 3. Dependency Graph of the Set of rules Rn from Example 6.

of 〈R′, I〉 is of the form fyn(. . . (fy1(c)) . . .) with c a constant. Furthermore,
such a term occurs in the chase only if y1, . . . , yn is a path in G(R′). Hence,
every term in the chase of 〈R′, I〉 corresponds to some path in G(R′) and some
constant. By Lemma 8 and the fact that R′ satisfies (b), we conclude that the
number of paths in G(R′) is polynomial in the number of nodes in G(R′) (which
coincides with the number of existentially quantified variables in R′). Therefore,
T is polynomially large with respect to 〈R′, I〉 and, since the number of variables
per rule in R′ is fixed, so is A. If R′ is a set of deterministic rules, then we can
compute the only branch on some (arbitrarily chosen) chase tree of 〈R′, I〉 to
solve BCQ entailment. This branch is a sequence of at most A sets of facts; and,
as there is an upper bound on the number of variables per rule in R′, each of
these sets can be computed in polynomial time. Moreover, checking if the facts
in the branch entail a query is in P if the size of the query is fixed.

In the nondeterministic case, we can guess some sequence of facts and then
check whether (i) such a sequence is a complete branch in some chase tree of
〈R′, I〉. Then, a query is not entailed by 〈R′, I〉 iff (ii) it is not entailed by the
facts in this branch. Note that, (i-ii) can be checked in P. ut

We proceed by showing the complexity of BCQ answering for any other com-
bination of the restrictions (a), (f), (b), (w), and (p). This shows, in particular,
that our chosen set of restrictions is minimal (among these selected conditions)
and any other combination leads to intractability.

Theorem 9. Deciding BCQ entailment for programs 〈R, I〉 with R a rule set
satisfying (a), (f), (b), (w), and (p) is coNP-hard. Moreover, if R is a set of
deterministic rules, then it is P-hard.

Proof. The results stated in the theorem follow from hardness of SAT and propo-
sitional Horn logic entailment, respectively. ut

Theorem 10. Deciding BCQ entailment for programs 〈R, I〉 with R a rule set
satisfying (a), (f), (b), and (p) is in coNPNP-complete. Moreover, if R is a set
of deterministic rules, then it is in NP-complete.

Proof. To show membership, we can make an analogous argument to the one in
the proof of Theorem 7 to show that there is a polynomial upper bound on the
number of terms T that may occur during the computation of the chase 〈R, I〉.



Moreover, since the arity of the predicates is bounded by some `, the number of
atoms in the chase is at most A = P ` · T .

If R is a set of deterministic rules, then we can guess some sequence of sets
F1, . . . ,Fn of facts with F1 = I; some sequence 〈ρ1, σ1〉, . . . , 〈ρn−1, σn−1〉 of
pairs of rules and substitutions with ρi ∈ R for every i = 1, . . . , n− 1; and some
additional substitution σ. To determine if 〈R, I〉 entails some query Q, we check
that, for every i = 1, . . . , n−1, (i) Fi+1 is the result of the application of 〈ρi, σi〉
on Fi; and (ii) Fn |= Qσ. Note that, (i-ii) can be verified in polynomial time, and
F1, . . . ,Fn may not necessarily be a complete branch in a chase tree of 〈R, I〉.

If R is a set of nondeterministic rules, then we simply guess some sequence
of sets F1, . . . ,Fn of facts with F1 = I. To determine that 〈R, I〉 does not entail
some query Q, we check that, for every i = 1, . . . , n− 1, (i)Fi+1 is the result of
the application of some rule in R and some substitution on Fi; (ii) no rule in R
and substitution is applicable to Fn; and (iii)Fn 6|= Q. (i-iii) can be polynomially
checked using an NP oracle.

For coNPNP-hardness, we reduce from the valuation problem of quantified
Boolean formulas (QBF) of the form ∀X.∃Y .ϕ, where X,Y are lists of proposi-
tional variables and ϕ is in 3CNF, i.e., ϕ = (L1

1∨L1
2∨L1

3)∧ . . .∧ (Ln
1 ∨Ln

2 ∨Ln
3 ),

such that the literals Li
j are variables or negated variables from X ∪ Y .

We construct a set of nondeterministic without existential variables rules
using constants t (true) and f (false). We add two facts tf(t) and tf(f). For every
i ∈ {1, . . . , n}, we add all (polynomially many) facts of the form ci(v1, v2, v3)
with v1, v2, v3 ∈ {t, f} such that (Li

1 ∨ Li
2 ∨ Li

3) is true when assigning the
values v1, v2, v3 to the (at most) three variables in the clause. In addition, for
each universally quantified X ∈X, we add a disjunctive fact valX(t) ∨ valX(f).
Finally, QBF valuation is encoded in the rule:∧

1≤i≤n

ci(x
i
1, x

i
2, x

i
3) ∧

∧
X∈X

valX(vX) ∧
∧

Y ∈Y

tf(vY )→ trueQBF (2)

where each variable has the form vZ for Z ∈ X ∪ Y , and xij denotes vZ for
the propositional variable Z that occurs in Li

j . Then trueQBF is entailed iff,
for all models (i.e., all assignments of universal variables X ∈ X), there is an
assignment for the variables Y ∈ Y , such that each clause in ϕ is true.

The hardness result for deterministic rules follows when considering QBF
without universally quantified variables; i.e., propositional satisfiability. ut

Theorem 11. BCQ entailment for programs 〈R, I〉 with R a set of determin-
istic rules satisfying (f), (b), (w), and (p) is undecidable.

Proof. We use a reduction from a known undecidable problem described as fol-
lows (see Section 2.5.1 of [16] for a very similar and more detailed argument).
A context-free grammar is a tuple 〈S, P 〉 with S a non-terminal, and P a set of
production rules of the form A → BC or A → a where A, B and C are non-
terminals and a is a terminal. The language generated by a grammar 〈S, P 〉 is
the set of all strings of terminals which can be produced by rewriting S applying
the production rules in P . The following problem is undecidable [14]: Given two



context-free grammars G1 = 〈P1, S1〉 and G2 = 〈P2, S2〉, with disjoint sets of
non-terminals and common terminal symbols 0 and 1, determine whether there
is some word in the intersection of the languages generated by G1 and G2.

Consider two binary predicates T0 and T1, a specific binary predicate NTA
for every non-terminal A occurring in G1 or G2, a unary predicate X, and a
constant c. For all i ∈ {1, 2}, let Ri = {Ta(x, y) → NTA(x, y) | A → a ∈
Pi} ∪ {NTB(x, y) ∧ NTC(y, z) → NTA(x, z) | A → BC ∈ Pi}. Moreover, let
R = R1 ∪R2 ∪{X(x)→ ∃y.T0(x, y)∧X(y), X(x)→ ∃z.T1(x, z)∧X(z)}. Then,
the intersection of the languages generated by G1 and G2 is empty iff 〈R, {X(c)}〉
does not entail the query ∃x.NTS1(c, x) ∧NTS2(c, x).

The rules in R satisfy (f), (b), (w), and (p): The arity of all of the symbols
in sk(R) (i.e., fy and fz) is one, G(R) contains two nodes, and the arity of every
predicate is at most two. Moreover, the number of variables per rule is bounded
and hence, so is the treewidth. ut

Theorem 12. Deciding BCQ entailment for programs 〈R, I〉 with R a rule set
satisfying (a) is in coN2ExpTime. Moreover, if R is a set of deterministic rules,
then it is in 2ExpTime.

Proof. We first determine the maximal number of ground (skolem) terms and
corresponding facts that may occur in the chase. Let n be the number of skolem
functions in sk(R), and let m be the maximal arity of such functions. The max-
imal nesting depth of ground terms in the chase is n, since every term of greater
depth is cyclic and, by (a), such terms may not occur in the chase of 〈R, I〉.
Ground terms then correspond to trees of depth at most n, fan-out at most m,
and with leaves from the set C of constants in 〈R, I〉. Such trees have most n·mn

nodes in total. As each node is assigned a constant or function symbol, there
are at most T = (|C| + n)n·m

n

trees, and hence ground terms, overall. Now, if
〈R, I〉 contains k different predicate symbols of arity at most `, then the max-
imal number of ground facts based on T terms is A = kT ` = k(CI + n)`·n·m

n

.
The number of facts A is therefore double exponential in the size of 〈R, I〉 and
hence, so is the length of every branch in a chase tree of a program 〈R, I〉.

If R is a set of deterministic rules, then there is only one branch in ev-
ery possible chase tree of a program 〈R, I〉 which can be computed in double-
exponentially many steps. Then, a query is entailed by 〈R, I〉 iff such query is en-
tailed by the set of facts in the branch. If R only contains nondeterministic rules,
membership in coN2ExpTime follows from the fact that BCQ non-entailment
can be shown by guessing some branch of the tree, and then checking that the
set of facts in such branch does not entail the query. ut

Theorem 13. Deciding BCQ entailment for programs 〈R, I〉 with R a rule set
satisfying (a) and (f) is in coNExpTime. Moreover, if R is a set of deterministic
rules, then it is in ExpTime.

Proof. We determine that the maximal number of facts that may occur in the
chase of 〈R, I〉 is exponential in the size of the program. The remainder of the
proof is analogous to that of Theorem 12.



Let n be the number of skolem functions in sk(R) which, by (f), have an
arity of at most 1. The maximal nesting depth of ground terms in the chase
is n, since every term of greater depth is cyclic and, by (a), such terms may
not occur in the chase of 〈R, I〉. Ground terms then correspond to sequences of
depth at most n and, since each element in the sequence is assigned a constant
or function symbol, there are at most T = (C + n)n ground terms, overall. In
turn, the maximal number of facts in the chase is A = kT ` = k(C + n)`·n with
k the number of predicates and ` the maximal arity of a predicate in 〈R, I〉. ut

Theorem 14. Deciding BCQ entailment for programs 〈R, I〉 with R a rule set
satisfying (a), (b), (w), and (p) is coN2ExpTime-hard. Moreover, if R is a set
of deterministic rules, then it is 2ExpTime-hard.

Proof. For the first result, we present a reduction of the word problem of double-
exponentially time-bounded non deterministic Turing machines (TMs) to BCQ
non-entailment. Given such reduction, it is clear how to produce a similar re-
duction to prove the second result stated in the theorem.

Consider a N2ExpTime Turing Machine (TM) M . We simulate the compu-
tation of M on an input string I by constructing a program 〈R, I〉 such that
〈R, I〉 does not entail some nullary predicate Reject iff M accepts I. To address
computation steps and tape cells, we recall a construction by [4] to (determin-
istically) construct a chain of double exponentially many elements. Let I =
{r0(0), r0(a),Scc0(0, 1),Min0(0),Max0(a)}. For each i ∈ {0, . . . , n − 1}, with n
the length of the input I, we add the rules in {Ri(x)∧Ri(y)→ ∃vi.Si(x, y, vi+1)∧
Ri+1(vi+1), Si(x, y, z) ∧ Si(x, y

′, z′) ∧ Scci(y, y′) → Scci+1(z, z
′), Si(x, y, z) ∧

Si(x
′, y′, z′)∧Maxi(y)∧Mini(y′)∧Scci(x, x′)→ Scci+1(z, z

′),Mini(x)∧Si(x, x, y)
→ Mini+1(y),Maxi(x)∧Si(x, x, y)→ Maxi+1(y)} It can be shown, by induction
on i, that in any path of any chase tree of 〈R, I〉, the relation rn contains 22

n

elements, which are linearly ordered by Sccn.
The remaining TM simulation follows standard constructions (cf. [11]), using

elements of the rn chain to refer to specific time points and tape cells when
encoding a run of the TM. Nondeterministic transitions are captured using
rules with disjunction. Assuming that the state of M at step s is captured
with facts Stateq(s) for all states Q, we can complete the simulation by adding
rules Stateq(x) ∧ Maxn(x) → Reject for all non-accepting states q of M . We
can assume without loss of generality that M runs for the maximum double-
exponential number of steps on all rejecting runs, so that the query Reject is
entailed iff there are no accepting runs.

The rules in R satisfy (a), (b), (w), and (p): G(R) is the smallest graph
containing vi → vi+1 for every i = 1, . . . , n and hence, this graph is acyclic
and does not contain any braids. Also, both the arity of the predicates, and
treewidth of the rules in R is fixed. Finally, it can be checked that the rules
added to finalize the reduction (cf. [11]) do not violate (a), (b), (w), nor (p). ut

Theorem 15. Deciding BCQ entailment for programs 〈R, I〉 with R a rule set
satisfying (a), (f), (w), and (p) is coNExpTime-hard. If R is a set of determin-
istic rules, then it is ExpTime-hard.



Proof. We show that, using a set of rules satisfying (a), (f), (w), and (p), we can
define a program that, given some n, can generate an exponentially long chain of
terms sorted by some binary predicate. The remainder of the proof is analogous
to that of Theorem 14.

Let R be the set containing the rules in {Si(x) → ∃yi+1, zi+1.Li(x, y) ∧
Ri(x, zi+1) ∧ Scci+1(yi+1, zi+1), Ri(x, z) ∧ Scci(x, y) ∧ Li(y, w) → Scci+1(z, w)}
for each i ∈ {0, . . . , n− 1}. We can show, by induction on i, that in any path of
any chase tree of 〈R, {S0(c)}〉, the relation Sn contains 2n elements, which are
linearly ordered by Sccn.

The rules in R satisfy (a), (f), (w), and (p): G(R) is the smallest graph
containing yi → yi+1, yi → zi+1, zi → yi+1, and zi → zi+1 for every i = 1, . . . , n,
and hence, this graph is acyclic. Also, the arity of every function symbol in sk(R)
is 1, and both the arity of the predicates and treewidth of the rules is fixed. ut

Theorem 16. Deciding BCQ entailment for programs 〈R, I〉 with R a rule set
satisfying (a), (f), and (b) is coNExpTime-hard. Moreover, if R is a set of
deterministic rules, then it is ExpTime-hard.

Proof. The first and second parts of the theorem follow from the hardness of fact
entailment over disjunctive and non-disjunctive Datalog [11], respectively. Note
that, every (possibly disjunctive) Datalog program – a program containing only
deterministic rules without existential variables – satisfies (a), (f) and (b). ut

4 Tractable Reasoning for Ontologies

Across this section we discuss how to employ the chase to reason over DL on-
tologies and then, using some of the results from the previous section, we define
tractable acyclicity, an acyclicity condition tailored for DL ontologies which en-
sures tractability of BCQ entailment.

We consider the SRI fragment of the description logic SROIQ, which is
the logical basis of OWL 2 DL. We present this DL using a normal form close to
that of [8]. Note that, in such a normal form, occurrences of the negation logical
constructor are normalized into axioms of the form (3) in Figure 4. Moreover, we
do not consider number restrictions nor nominals in our definition of DL, as the
use of these logical constructors would require equality reasoning. There are well-
known techniques to axiomatize the meaning of equality – e.g., singularization
[10, 21] – but these are not our focus.

Let C, R, and I be some infinite countable and pairwise disjoint sets of
concepts, roles, and individuals, respectively. Moreover, let R− = R∪{R− | R ∈
R}; and, for every R ∈ R−, R−− = R. A TBox axiom is a formula of one of the
forms given on the left hand side of Figure 4. An ABox axiom or assertion is a
formula of the form A(a) or R(a, b) with A ∈ C, R ∈ R and a, b ∈ I. A ontology
is a tuple 〈T ,A〉 with T a set of TBox axioms and A a set of assertions.

We do not consider any structural restrictions, such as role regularity [15],
in our definition of ontologies. These restrictions are unnecessary for preserving
correctness when using the chase and hence, we ignore them.
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C v ∀R.D 7→ C(x) ∧R〈x, y〉 → D(y) (4)
C v ∃R.Self 7→ C(x)→ R〈x, x〉 (5)
∃S.Self v D 7→ R〈x, x〉 → D(x) (6)

nl

i=1

Si v R 7→
n∧

i=1

Si〈x, y〉 → R〈x, y〉 (7)

S1 ◦ . . . ◦ Sn v R 7→ S1〈x0, x1〉 ∧ . . . ∧ Sn〈xn−1, xn〉 → R〈x0, xn〉 (8)
C v ∃R.D 7→ C(x)→ ∃y.R〈x, y〉 ∧D(y) (9)

Fig. 4. Mapping Ψ . In the above, C(i), D ∈ C, R,S(i) ∈ R−, and m,n ≥ 1. Moreover,
for every R ∈ R, R−〈t, u〉 = R(u, t) and R〈t, u〉 = R(t, u).

The semantics of ontologies are given by means of a mapping into programs.

Fact 17 An ontology O entails some query Q iff 〈Ψ(R), I〉 |= Q with Ψ the
function mapping axioms to rules defined in Figure 4.

Due to the close correspondence between DL axioms and rules highlighted
by the previous result, we identify an axiom α with the rule Ψ(α), a TBox T
with the set of rules Ψ(R), and an ontology 〈T ,A〉 with the program 〈Ψ(R),A〉.

By definition, every TBox T satisfies restrictions (f) and (w) and hence, we
only need to determine whether T satisfies (a) and (b) to guarantee tractability
of reasoning over a deterministic ontology 〈T ,A〉. Unfortunately, the dependency
graph of a TBox – which needs to be checked in order to verify (a) and (b) –
cannot be computed in polynomial time.

Lemma 18. Given a TBox T , the computation of G(T ) is ExpTime-hard.

Proof. The lemma follows from the fact that entailment of concept subsump-
tions by a TBox (which is ExpTime-hard) can be decided by computing the
dependency graph of another TBox T ′.

Consider a TBox T and two concepts C and D. Moreover, let T ′ = T ∪{α1 =
C v ∃RY .C u Y, α2 = Y uD v ∃RZ .Z} with RY and RZ , and Y and Z some
fresh roles and concepts, respectively. Then, T |= C v D iff y → z ∈ G(T ′) with
y and z the variables occurring in the rules Ψ(α1) and Ψ(α2). ut

Since the computation of the dependency graph of a TBox is rather expensive,
we define an over-approximation of this graph based on the definition of model-
summarizing acyclicity (MSA) [10] which can be computed more efficiently.

Definition 19. Given a set of rules R, let RS be the set of rules that results
from replacing every rule ρ ∈ R of the form (1) by the following rule.

B →
∧

1≤i≤n

(
Hi ∧

∧
x∈x

∧
v∈vi

Scc(x, v)
)
θ (10)



In the above, Scc is a fresh binary predicate and θ is the substitution mapping
every variable in v ∈ vi to a fresh constant cv (which, by (†) and the definition
of a rule, is also specific to the i-th disjunct in the head of the rule ρ).

The summarizing dependency graph GS(R) of a rule set R is the smallest
graph containing an edge y → z if 〈RS , I?R〉 |= Scc(cy, cz) where I?R is the critical
instance of R; i.e., the set of all facts that can be constructed using the predicates
in R and the special constant ?.

Lemma 20. Consider a rule set R. Then, the summarizing dependency graph
of R is a superset of the dependency graph of R.

Proof. Consider some chase tree T of a program 〈R, I〉; and a function h map-
ping every constant to ?, and every skolem term of the form fy(t) to the constant
cy. Then, for every set of facts F associated to some node α in T , h(F) is con-
tained in the result of the chase of 〈RS , I?R〉. The previous claim can be verified
by induction on the path from the root of T to α.

Let us assume that there is some edge y → z ∈ G(R). Then, by the definition
of the dependency graph, there must be some terms fz(t) and fy(s) with fy(s) ∈
t occurring in some set of facts F in some chase tree of a program 〈R, I〉. Let
B[x,y]→

∨n
i=1 ∃vi.Hi[x,vi] be the only rule in R containing z in some disjunct

in the head. Then, B[x/t] ⊆ F , and hence, h(B[x/t]) is contained in the result
of the chase of 〈MSA(R), I?R〉. Since B →

∧n
i=1(H

′
i ∧
∧

x∈x
∧

v∈vi
Scc(x, v))θ ∈

MSA(R), then Scc(cy, cz) is also in the result of the chase of 〈MSA(R), I?R〉. In
turn, this implies that y → z ∈ GS(R). ut

We proceed with the definition of tractable acyclicity, and thereafter establish
the complexity of checking this condition and reasoning over such ontologies

Definition 21. A TBox T is k-tractable acyclic (TAk) if its summarizing graph
is acyclic and the length of every braid in this graph is at most k.

Theorem 22. Deciding TAk membership of a TBox T is P-complete.

Proof. To verify membership, we propose a polynomial procedure to determine
if GS(T ) is acyclic and then compute the length of the longest braid in GS(T ).
Let P = 〈R, I〉 be the program where I is the instance containing E(cy, cz)
for every y → z ∈ GS(T ), and Neq(cy, cz) for every pair of nodes y and
z in GS(T ) with y 6= z; and R = {→ P(x, x),E(x, y) → P(x, y),P(x, y) ∧
P(y, z) → P(x, z),P(x, y) ∧ P(y, z) → P(x, z),P(x, y) ∧ P(x, z) ∧ Neq(y, z) ∧
E(y, w)∧E(z, w)→ B(x,w),B(x, y)∧B(y, z)→ B(x, z)}. Then, there is a braid
starting in y and ending in z in GS(R) if and only if P |= B(cy, cz). Thus, to
determine the maximum length of a braid in GS(R), we simply have to look
for the largest path over the binary predicate B in the result of the chase of P.
Moreover, GS(R) is acyclic if and only if P does not entail the query ∃x.P(x, x).
Note that, the program P can be constructed in polynomial time since the com-
putation of GS(T ) is tractable. Moreover, as the number of variables per rule in
R is at most 4 and the maximum arity of a predicate is 2, the chase of such a
program can be computed in polynomial time.



Hardness of the TAk membership check can be readily ascertained via reduc-
tion from propositional horn entailment. ut

Theorem 23. Deciding BCQ entailment for TAk ontologies 〈T ,A〉 is coNP-
complete provided the size of the query is fixed. Moreover, if T is a deterministic
TBox, then it is P-complete.

Proof. If T is TAk, then GS(T ) is acyclic and every braid in GS(T ) is of length
at most k. In turn, this implies that G(T ) is acyclic and every braid in G(T ) is
of length at most k by Lemma 20. Since the TBox T satisfies restrictions (a),
(b), (f), and (w), the theorem follows from Theorems 7 and 23. ut

5 Evaluation

To assess the empirical generality of TAk, we analyzed ontologies from MOWL-
Corp [22] and Oxford Ontology Library,2 two large corpora of real-world OWL
ontologies. These ontologies were transformed into the normal form defined in
Figure 4 using standard normalization techniques [8]. After this step, we dis-
regarded ontologies with nominals and number restrictions; and also ontologies
without any axiom of type (9), as these are trivially TA0. Since the MOWLCorp
is rather large, we only considered ontologies in this corpus with up to 1,000
axioms of type (9). The final set contained 1,576 TBoxes from MOWLCorp and
225 TBoxes from the Oxford Ontology Library.

To determine TAk membership, we first constructed the summarizing de-
pendency graphs of the TBoxes. For this, we transformed axioms to rules using
the mapping in Figure 4 and derived the programs described in Definition 19,
over which we reasoned using the RDFox [24] datalog rule engine. Out of the
obtained graphs, we found 974 (61.8%) acyclic ones from MOWLCorp and 171
(76%) from Oxford Library. Then, we determined TAk membership of acyclic
graphs by counting the length of their longest braid. We did this by constructing
the program defined in Theorem 22, over which we reasoned using RDFox.

As our results show in Table 1, 78.3% of acyclic ontologies from MOWLCorp
are TA1, 90.8% are TA2, 95.5% are TA3, 98.8% are TA4 and 99% are TA5. In the
Oxford Library, 51.4% of the acyclic ontologies are TA1, 69.5% are TA2, 81.2%
are TA3, 92.3% are TA4, 97.6 % are TA5 and 98.2 % are TA6. There was only
one ontology from the Oxford corpus (00477.owl), containing more than 150,000
rules of type (9), for which computing TAk membership did not terminate.

Our acyclicity notion is theoretically equivalent to MSA and as general as
MFA with respect to the evaluated ontologies: In our test set, there are no MFA
ontologies which were not MSA. This validates the claims from [7, 10], where
it was observed that MFA (the most general known acyclicity criterion for the
skolem chase) is not empirically more general than MSA. Moreover, our results
show that almost all acyclic ontologies are TAk with a small k: TA5 characterizes
97% of the ontologies in both corpora.
2 http://www.cs.ox.ac.uk/isg/ontologies/



MOWLCorp TA1 TA2 TA3 TA4 TA5 TA22 TA23 TA25 Total
763 122 36 42 2 2 6 1 974

Oxford Onto. Library TA1 TA2 TA3 TA4 TA5 TA6 TA11 TA23 Total
88 31 20 19 9 1 1 1 170

Table 1. Histogram of TAk on ontologies from MOWL and Oxford corpora, where for
TAk we only count ontologies that do not also belong to TAj for all j < k.

6 Conclusions and Future Work

To the best of our knowledge, this is the first systematic study of tractability
of CQ answering with disjunctive existential rules. An important application is
tractable query answering over OWL ontologies, a task which in general is known
to be intractable [25]. We have shown that our restrictions do indeed apply, for
small bounds of the related parameters, to many practical ontologies.

Our work therefore suggests a new approach to efficient reasoning that might
be applicable to many realistic ontologies, and which might be natural to imple-
ment in existing reasoners such as HermiT [23], which use chase-like procedures
already. The extension of our work with more general conditions for restricted
chase termination, which was recently shown to work well with many OWL
ontologies [7], may further help to extend the applicability of this approach.
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